File size: 2,398 Bytes
ce52ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import torch
import torch.nn as nn
import torchvision.models as models
from transformers import PreTrainedModel, AutoConfig

# Define the model architecture based on EfficientNetV2-S
class AIDetectorModel(nn.Module):
    def __init__(self):
        super(AIDetectorModel, self).__init__()
        # Load EfficientNetV2-S as base model
        self.base_model = models.efficientnet_v2_s(weights=None)
        
        # Replace classifier with custom layers
        self.base_model.classifier = nn.Sequential(
            nn.Linear(self.base_model.classifier[1].in_features, 1024),
            nn.ReLU(),
            nn.Dropout(p=0.3),
            nn.Linear(1024, 512),
            nn.ReLU(),
            nn.Dropout(p=0.3),
            nn.Linear(512, 2)  # 2 classes: real or AI-generated
        )
    
    def forward(self, x):
        return self.base_model(x)

# Wrapper class to make the model compatible with Hugging Face
class AIDetectorForImageClassification(PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = AIDetectorModel()
        
        # Load the trained weights
        model_path = os.path.join(os.getcwd(), "best_model_improved.pth")
        try:
            # Try to load with strict=True first
            self.model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
            print(f"Model loaded successfully from {model_path}")
        except Exception as e:
            print(f"Error with strict loading: {e}")
            print("Trying with strict=False...")
            # If that fails, try with strict=False
            self.model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")), strict=False)
            print("Model loaded with strict=False")
    
    def forward(self, pixel_values, labels=None, **kwargs):
        logits = self.model(pixel_values)
        
        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
        
        return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}

# Function to create and load the model
def get_model():
    config = AutoConfig.from_pretrained("./")
    model = AIDetectorForImageClassification(config)
    return model