Update README.md
Browse files
README.md
CHANGED
@@ -49,11 +49,9 @@ pipeline_tag: text-to-image
|
|
49 |
|
50 |
# Kanji Diffusion v1-4 Model Card
|
51 |
|
52 |
-
Kanji Diffusion is a latent text-to-image diffusion model capable of hallucinating Kanji characters given any prompt.
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
## Model Details
|
57 |
- **Developed by:** Yashpreet Voladoddi
|
58 |
- **Model type:** Diffusion-based text-to-image generation model, fine-tuned on Stable Diffusion v1.4 model.
|
59 |
|
@@ -61,9 +59,8 @@ This weights here are intended to be used with the 🧨 Diffusers library. If yo
|
|
61 |
In order to run the pipeline and see how my model generates the kanji characters, follow the code flow below on Colab(on T4 GPU runtime, else it takes a long time to infer each image).
|
62 |
Make sure you have your Huggingface API KEY / ACCESS TOKEN for this.
|
63 |
|
|
|
64 |
import os
|
65 |
-
|
66 |
-
'''python
|
67 |
from google.colab import drive
|
68 |
drive.mount('/content/drive')
|
69 |
os.chdir("/content/drive/MyDrive")
|
@@ -84,20 +81,14 @@ pipe.to("cuda")
|
|
84 |
prompt = "A Kanji meaning baby robot"
|
85 |
image = pipe(prompt).images[0]
|
86 |
image.save("baby-robot-kanji-v1-4.png")
|
87 |
-
|
88 |
|
89 |
### Limitations
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
## Training
|
96 |
|
97 |
**Training Data**
|
98 |
|
99 |
-
|
100 |
-
|
101 |
**Hardware:** Nvidia GTX 1650 4GB vRAM | 8GB RAM and T4 GPU on Colab
|
102 |
|
103 |
**Training Script:**
|
|
|
49 |
|
50 |
# Kanji Diffusion v1-4 Model Card
|
51 |
|
52 |
+
Kanji Diffusion is a latent text-to-image diffusion model capable of hallucinating Kanji characters given any English prompt.
|
53 |
|
54 |
+
## Fine-tuned Model Details
|
|
|
|
|
55 |
- **Developed by:** Yashpreet Voladoddi
|
56 |
- **Model type:** Diffusion-based text-to-image generation model, fine-tuned on Stable Diffusion v1.4 model.
|
57 |
|
|
|
59 |
In order to run the pipeline and see how my model generates the kanji characters, follow the code flow below on Colab(on T4 GPU runtime, else it takes a long time to infer each image).
|
60 |
Make sure you have your Huggingface API KEY / ACCESS TOKEN for this.
|
61 |
|
62 |
+
```python
|
63 |
import os
|
|
|
|
|
64 |
from google.colab import drive
|
65 |
drive.mount('/content/drive')
|
66 |
os.chdir("/content/drive/MyDrive")
|
|
|
81 |
prompt = "A Kanji meaning baby robot"
|
82 |
image = pipe(prompt).images[0]
|
83 |
image.save("baby-robot-kanji-v1-4.png")
|
84 |
+
```
|
85 |
|
86 |
### Limitations
|
87 |
|
|
|
|
|
|
|
|
|
88 |
## Training
|
89 |
|
90 |
**Training Data**
|
91 |
|
|
|
|
|
92 |
**Hardware:** Nvidia GTX 1650 4GB vRAM | 8GB RAM and T4 GPU on Colab
|
93 |
|
94 |
**Training Script:**
|