--- library_name: transformers base_model: PowerInfer/SmallThinker-3B-Preview tags: - generated_from_trainer model-index: - name: powerinfer-seq-cls-ywko_e5 results: [] --- # powerinfer-seq-cls-ywko_e5 This model is a fine-tuned version of [PowerInfer/SmallThinker-3B-Preview](https://huggingface.co/PowerInfer/SmallThinker-3B-Preview) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 64 - total_train_batch_size: 4096 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4779 | 0.9143 | 30 | 0.1895 | | 0.1332 | 1.8533 | 60 | 0.1015 | | 0.0797 | 2.7924 | 90 | 0.0780 | | 0.0811 | 3.7314 | 120 | 0.0743 | | 0.0669 | 4.6705 | 150 | 0.0727 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1