|
from typing import Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .module import NeuralModule |
|
from .tdnn_attention import ( |
|
StatsPoolLayer, |
|
AttentivePoolLayer, |
|
ChannelDependentAttentiveStatisticsPoolLayer, |
|
TdnnModule, |
|
TdnnSeModule, |
|
TdnnSeRes2NetModule, |
|
init_weights |
|
) |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, padding=1): |
|
"""2D convolution with kernel_size = 3""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=padding, |
|
bias=False, |
|
) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""2D convolution with kernel_size = 1""" |
|
return nn.Conv2d( |
|
in_planes, out_planes, kernel_size=1, stride=stride, bias=False |
|
) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
stride=1, |
|
downsample=None, |
|
activation=nn.ReLU, |
|
): |
|
super(BasicBlock, self).__init__() |
|
self.activation = activation() |
|
|
|
self.bn1 = nn.BatchNorm2d(in_channels) |
|
self.conv1 = conv3x3(in_channels, out_channels, stride) |
|
|
|
self.bn2 = nn.BatchNorm2d(out_channels) |
|
self.conv2 = conv3x3(out_channels, out_channels) |
|
|
|
self.bn3 = nn.BatchNorm2d(out_channels) |
|
self.conv3 = conv1x1(out_channels, out_channels) |
|
|
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
out = self.bn1(x) |
|
out = self.activation(out) |
|
out = self.conv1(out) |
|
|
|
out = self.bn2(out) |
|
out = self.activation(out) |
|
out = self.conv2(out) |
|
|
|
out = self.bn3(out) |
|
out = self.activation(out) |
|
out = self.conv3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
|
|
return out |
|
|
|
|
|
class SEBlock(nn.Module): |
|
|
|
def __init__(self, channels, reduction=1, activation=nn.ReLU): |
|
super(SEBlock, self).__init__() |
|
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
|
|
self.fc = nn.Sequential( |
|
nn.Linear(channels, channels // reduction), |
|
activation(), |
|
nn.Linear(channels // reduction, channels), |
|
nn.Sigmoid(), |
|
) |
|
|
|
def forward(self, x): |
|
"""Intermediate step. Processes the input tensor x |
|
and returns an output tensor. |
|
""" |
|
b, c, _, _ = x.size() |
|
y = self.avg_pool(x).view(b, c) |
|
y = self.fc(y).view(b, c, 1, 1) |
|
return x * y |
|
|
|
|
|
class SEBasicBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
stride=1, |
|
downsample=None, |
|
activation=nn.ReLU, |
|
reduction=1, |
|
): |
|
super(SEBasicBlock, self).__init__() |
|
self.activation = activation() |
|
|
|
self.bn1 = nn.BatchNorm2d(in_channels) |
|
self.conv1 = conv3x3(in_channels, out_channels, stride) |
|
|
|
self.bn2 = nn.BatchNorm2d(out_channels) |
|
self.conv2 = conv3x3(out_channels, out_channels) |
|
|
|
self.bn3 = nn.BatchNorm2d(out_channels) |
|
self.conv3 = conv1x1(out_channels, out_channels) |
|
|
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
self.se = SEBlock(out_channels, reduction) |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.bn1(x) |
|
out = self.activation(out) |
|
out = self.conv1(out) |
|
|
|
out = self.bn2(out) |
|
out = self.activation(out) |
|
out = self.conv2(out) |
|
|
|
out = self.bn3(out) |
|
out = self.activation(out) |
|
out = self.conv3(out) |
|
|
|
out = self.se(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
|
|
return out |
|
|
|
|
|
class SEBottleneck(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
stride=1, |
|
downsample=None, |
|
activation=nn.ReLU, |
|
reduction=16, |
|
): |
|
super(SEBottleneck, self).__init__() |
|
self.activation = activation() |
|
|
|
|
|
self.conv1 = conv1x1(in_channels, out_channels // 4, stride) |
|
self.bn1 = nn.BatchNorm2d(out_channels // 4) |
|
|
|
|
|
self.conv2 = conv3x3(out_channels // 4, out_channels // 4) |
|
self.bn2 = nn.BatchNorm2d(out_channels // 4) |
|
|
|
|
|
self.conv3 = conv1x1(out_channels // 4, out_channels) |
|
self.bn3 = nn.BatchNorm2d(out_channels) |
|
|
|
|
|
self.se = SEBlock(out_channels, reduction) |
|
|
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.activation(out) |
|
|
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.activation(out) |
|
|
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
|
|
out = self.se(out) |
|
|
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
|
|
out += residual |
|
out = self.activation(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
stride=1, |
|
downsample=None, |
|
activation=nn.ReLU, |
|
): |
|
super(Bottleneck, self).__init__() |
|
self.activation = activation() |
|
|
|
|
|
self.conv1 = conv1x1(in_channels, out_channels // 4, stride) |
|
self.bn1 = nn.BatchNorm2d(out_channels // 4) |
|
|
|
|
|
self.conv2 = conv3x3(out_channels // 4, out_channels // 4) |
|
self.bn2 = nn.BatchNorm2d(out_channels // 4) |
|
|
|
|
|
self.conv3 = conv1x1(out_channels // 4, out_channels) |
|
self.bn3 = nn.BatchNorm2d(out_channels) |
|
|
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.activation(out) |
|
|
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.activation(out) |
|
|
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
|
|
out += residual |
|
out = self.activation(out) |
|
|
|
return out |
|
|
|
|
|
class ResNetEncoder(NeuralModule): |
|
|
|
def __init__( |
|
self, |
|
feat_in: int, |
|
filters: list = [16, 32, 64, 128], |
|
block_sizes: list = [3, 4, 6, 3], |
|
strides: list = [1, 2, 2, 1], |
|
block_type: str = 'basic', |
|
reduction: int = 8, |
|
init_mode: str = 'xavier_uniform', |
|
): |
|
super().__init__() |
|
if block_type == 'basic': |
|
self.block_class = BasicBlock |
|
self.se_block_class = SEBasicBlock |
|
elif block_type == 'bottleneck': |
|
self.block_class = Bottleneck |
|
self.se_block_class = SEBottleneck |
|
|
|
self.pre_conv = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=1, |
|
out_channels=filters[0], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False |
|
), |
|
nn.BatchNorm2d(filters[0]), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.layer1 = self._make_layer_se( |
|
filters[0], filters[0], block_sizes[0], stride=strides[0], reduction=reduction |
|
) |
|
self.layer2 = self._make_layer_se( |
|
filters[0], filters[1], block_sizes[1], stride=strides[1], reduction=reduction |
|
) |
|
self.layer3 = self._make_layer( |
|
filters[1], filters[2], block_sizes[2], stride=strides[2] |
|
) |
|
self.layer4 = self._make_layer( |
|
filters[2], filters[3], block_sizes[3], stride=strides[3] |
|
) |
|
|
|
self.apply(lambda x: init_weights(x, mode=init_mode)) |
|
|
|
def _make_layer_se(self, in_channels, out_channels, block_num, stride=1, reduction=1): |
|
"""Construct the squeeze-and-excitation block layer. |
|
|
|
Arguments |
|
--------- |
|
in_channels : int |
|
Number of input channels. |
|
out_channels : int |
|
The number of output channels. |
|
block_num: int |
|
Number of ResNet blocks for the network. |
|
stride : int |
|
Factor that reduce the spatial dimensionality. Default is 1 |
|
|
|
Returns |
|
------- |
|
se_block : nn.Sequential |
|
Squeeze-and-excitation block |
|
""" |
|
downsample = None |
|
if stride != 1 or in_channels != out_channels: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
self.se_block_class(in_channels, out_channels, stride, downsample, reduction=reduction) |
|
) |
|
|
|
for i in range(1, block_num): |
|
layers.append(self.se_block_class(out_channels, out_channels, reduction=reduction)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_layer(self, in_channels, out_channels, block_num, stride=1): |
|
""" |
|
Construct the ResNet block layer. |
|
|
|
Arguments |
|
--------- |
|
in_channels : int |
|
Number of input channels. |
|
out_channels : int |
|
The number of output channels. |
|
block_num: int |
|
Number of ResNet blocks for the network. |
|
stride : int |
|
Factor that reduce the spatial dimensionality. Default is 1 |
|
|
|
Returns |
|
------- |
|
block : nn.Sequential |
|
ResNet block |
|
""" |
|
downsample = None |
|
if stride != 1 or in_channels != out_channels: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels), |
|
) |
|
|
|
layers = [] |
|
layers.append(self.block_class(in_channels, out_channels, stride, downsample)) |
|
|
|
for i in range(1, block_num): |
|
layers.append(self.block_class(out_channels, out_channels)) |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, audio_signal: torch.Tensor, length: torch.Tensor = None): |
|
x = audio_signal |
|
x = x.unsqueeze(dim=1) |
|
|
|
x = self.pre_conv(x) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = x.flatten(1, 2) |
|
|
|
return x, length |
|
|
|
|
|
class SpeakerDecoder(NeuralModule): |
|
""" |
|
Speaker Decoder creates the final neural layers that maps from the outputs |
|
of Jasper Encoder to the embedding layer followed by speaker based softmax loss. |
|
|
|
Args: |
|
feat_in (int): Number of channels being input to this module |
|
num_classes (int): Number of unique speakers in dataset |
|
emb_sizes (list) : shapes of intermediate embedding layers (we consider speaker embbeddings |
|
from 1st of this layers). Defaults to [1024,1024] |
|
pool_mode (str) : Pooling strategy type. options are 'xvector','tap', 'attention' |
|
Defaults to 'xvector (mean and variance)' |
|
tap (temporal average pooling: just mean) |
|
attention (attention based pooling) |
|
init_mode (str): Describes how neural network parameters are |
|
initialized. Options are ['xavier_uniform', 'xavier_normal', |
|
'kaiming_uniform','kaiming_normal']. |
|
Defaults to "xavier_uniform". |
|
""" |
|
|
|
def __init__( |
|
self, |
|
feat_in: int, |
|
num_classes: int, |
|
emb_sizes: Optional[Union[int, list]] = 256, |
|
pool_mode: str = 'xvector', |
|
angular: bool = False, |
|
attention_channels: int = 128, |
|
init_mode: str = "xavier_uniform", |
|
): |
|
super().__init__() |
|
self.angular = angular |
|
self.emb_id = 2 |
|
bias = False if self.angular else True |
|
emb_sizes = [emb_sizes] if type(emb_sizes) is int else emb_sizes |
|
|
|
self._num_classes = num_classes |
|
self.pool_mode = pool_mode.lower() |
|
if self.pool_mode == 'xvector' or self.pool_mode == 'tap': |
|
self._pooling = StatsPoolLayer(feat_in=feat_in, pool_mode=self.pool_mode) |
|
affine_type = 'linear' |
|
elif self.pool_mode == 'attention': |
|
self._pooling = AttentivePoolLayer(inp_filters=feat_in, attention_channels=attention_channels) |
|
affine_type = 'conv' |
|
elif self.pool_mode == 'ecapa2': |
|
self._pooling = ChannelDependentAttentiveStatisticsPoolLayer( |
|
inp_filters=feat_in, attention_channels=attention_channels |
|
) |
|
affine_type = 'conv' |
|
|
|
shapes = [self._pooling.feat_in] |
|
for size in emb_sizes: |
|
shapes.append(int(size)) |
|
|
|
emb_layers = [] |
|
for shape_in, shape_out in zip(shapes[:-1], shapes[1:]): |
|
layer = self.affine_layer(shape_in, shape_out, learn_mean=False, affine_type=affine_type) |
|
emb_layers.append(layer) |
|
|
|
self.emb_layers = nn.ModuleList(emb_layers) |
|
|
|
self.final = nn.Linear(shapes[-1], self._num_classes, bias=bias) |
|
|
|
self.apply(lambda x: init_weights(x, mode=init_mode)) |
|
|
|
def affine_layer( |
|
self, |
|
inp_shape, |
|
out_shape, |
|
learn_mean=True, |
|
affine_type='conv', |
|
): |
|
if affine_type == 'conv': |
|
layer = nn.Sequential( |
|
nn.BatchNorm1d(inp_shape, affine=True, track_running_stats=True), |
|
nn.Conv1d(inp_shape, out_shape, kernel_size=1), |
|
) |
|
|
|
else: |
|
layer = nn.Sequential( |
|
nn.Linear(inp_shape, out_shape), |
|
nn.BatchNorm1d(out_shape, affine=learn_mean, track_running_stats=True), |
|
nn.ReLU(), |
|
) |
|
|
|
return layer |
|
|
|
def forward(self, encoder_output, length=None): |
|
pool = self._pooling(encoder_output, length) |
|
embs = [] |
|
|
|
for layer in self.emb_layers: |
|
pool, emb = layer(pool), layer[: self.emb_id](pool) |
|
embs.append(emb) |
|
|
|
pool = pool.squeeze(-1) |
|
if self.angular: |
|
for W in self.final.parameters(): |
|
W = F.normalize(W, p=2, dim=1) |
|
pool = F.normalize(pool, p=2, dim=1) |
|
|
|
out = self.final(pool) |
|
|
|
return out, embs[-1].squeeze(-1) |