import torch.nn as nn class BatchNorm1d(nn.Module): """Applies 1d batch normalization to the input tensor. Arguments --------- input_shape : tuple The expected shape of the input. Alternatively, use ``input_size``. input_size : int The expected size of the input. Alternatively, use ``input_shape``. eps : float This value is added to std deviation estimation to improve the numerical stability. momentum : float It is a value used for the running_mean and running_var computation. affine : bool When set to True, the affine parameters are learned. track_running_stats : bool When set to True, this module tracks the running mean and variance, and when set to False, this module does not track such statistics. combine_batch_time : bool When true, it combines batch an time axis. skip_transpose : bool Whether to skip the transposition. Example ------- >>> input = torch.randn(100, 10) >>> norm = BatchNorm1d(input_shape=input.shape) >>> output = norm(input) >>> output.shape torch.Size([100, 10]) """ def __init__( self, input_shape=None, input_size=None, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, combine_batch_time=False, skip_transpose=False, ): super().__init__() self.combine_batch_time = combine_batch_time self.skip_transpose = skip_transpose if input_size is None and skip_transpose: input_size = input_shape[1] elif input_size is None: input_size = input_shape[-1] self.norm = nn.BatchNorm1d( input_size, eps=eps, momentum=momentum, affine=affine, track_running_stats=track_running_stats, ) def forward(self, x, *args, **kwargs): """Returns the normalized input tensor. Arguments --------- x : torch.Tensor (batch, time, [channels]) input to normalize. 2d or 3d tensors are expected in input 4d tensors can be used when combine_dims=True. Returns ------- x_n : torch.Tensor The normalized outputs. """ shape_or = x.shape if self.combine_batch_time: if x.ndim == 3: x = x.reshape(shape_or[0] * shape_or[1], shape_or[2]) else: x = x.reshape( shape_or[0] * shape_or[1], shape_or[3], shape_or[2] ) elif not self.skip_transpose: x = x.transpose(-1, 1) x_n = self.norm(x) if self.combine_batch_time: x_n = x_n.reshape(shape_or) elif not self.skip_transpose: x_n = x_n.transpose(1, -1) return x_n