--- library_name: transformers tags: - audio-classification - generated_from_trainer datasets: - voxceleb metrics: - accuracy model-index: - name: etdnn-voxceleb1 results: - task: name: Audio Classification type: audio-classification dataset: name: confit/voxceleb type: voxceleb config: verification split: train args: verification metrics: - name: Accuracy type: accuracy value: 0.9340733266061217 --- # etdnn-voxceleb1 This model is a fine-tuned version of [](https://huggingface.co/) on the confit/voxceleb dataset. It achieves the following results on the evaluation set: - Loss: 0.3594 - Accuracy: 0.9341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 256 - eval_batch_size: 1 - seed: 914 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.489 | 1.0 | 523 | 4.2089 | 0.1722 | | 3.0685 | 2.0 | 1046 | 2.7621 | 0.4110 | | 2.2892 | 3.0 | 1569 | 1.6627 | 0.6543 | | 1.7576 | 4.0 | 2092 | 1.1761 | 0.7586 | | 1.3706 | 5.0 | 2615 | 0.8903 | 0.8204 | | 1.1258 | 6.0 | 3138 | 0.7555 | 0.8433 | | 0.9379 | 7.0 | 3661 | 0.5587 | 0.8897 | | 0.7925 | 8.0 | 4184 | 0.4518 | 0.9117 | | 0.6733 | 9.0 | 4707 | 0.3889 | 0.9293 | | 0.6187 | 10.0 | 5230 | 0.3594 | 0.9341 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.0.0+cu117 - Datasets 3.2.0 - Tokenizers 0.21.0