File size: 19,318 Bytes
e5dee27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import math
from typing import List, Optional
from numpy import inf
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import _calculate_correct_fan
class StatsPoolLayer(nn.Module):
"""Statistics and time average pooling (TAP) layer
This computes mean and, optionally, standard deviation statistics across the time dimension.
Args:
feat_in: Input features with shape [B, D, T]
pool_mode: Type of pool mode. Supported modes are 'xvector' (mean and standard deviation) and 'tap' (time
average pooling, i.e., mean)
eps: Epsilon, minimum value before taking the square root, when using 'xvector' mode.
unbiased: Whether to use the biased estimator for the standard deviation when using 'xvector' mode. The default
for torch.Tensor.std() is True.
Returns:
Pooled statistics with shape [B, D].
Raises:
ValueError if an unsupported pooling mode is specified.
"""
def __init__(self, feat_in: int, pool_mode: str = 'xvector', eps: float = 1e-10, unbiased: bool = True):
super().__init__()
supported_modes = {"xvector", "tap"}
if pool_mode not in supported_modes:
raise ValueError(f"Pool mode must be one of {supported_modes}; got '{pool_mode}'")
self.pool_mode = pool_mode
self.feat_in = feat_in
self.eps = eps
self.unbiased = unbiased
if self.pool_mode == 'xvector':
# Mean + std
self.feat_in *= 2
def forward(self, encoder_output, length=None):
if length is None:
mean = encoder_output.mean(dim=-1) # Time Axis
if self.pool_mode == 'xvector':
correction = 1 if self.unbiased else 0
std = encoder_output.std(dim=-1, correction=correction).clamp(min=self.eps)
pooled = torch.cat([mean, std], dim=-1)
else:
pooled = mean
else:
mask = make_seq_mask_like(like=encoder_output, lengths=length, valid_ones=False)
encoder_output = encoder_output.masked_fill(mask, 0.0)
# [B, D, T] -> [B, D]
means = encoder_output.mean(dim=-1)
# Re-scale to get padded means
means = means * (encoder_output.shape[-1] / length).unsqueeze(-1)
if self.pool_mode == "xvector":
correction = 1 if self.unbiased else 0
stds = (
encoder_output.sub(means.unsqueeze(-1))
.masked_fill(mask, 0.0)
.pow(2.0)
.sum(-1) # [B, D, T] -> [B, D]
.div(length.view(-1, 1).sub(correction))
.clamp(min=self.eps)
.sqrt()
)
pooled = torch.cat((means, stds), dim=-1)
else:
pooled = means
return pooled
class AttentivePoolLayer(nn.Module):
"""
Attention pooling layer for pooling speaker embeddings
Reference: ECAPA-TDNN Embeddings for Speaker Diarization (https://arxiv.org/pdf/2104.01466.pdf)
inputs:
inp_filters: input feature channel length from encoder
attention_channels: intermediate attention channel size
kernel_size: kernel_size for TDNN and attention conv1d layers (default: 1)
dilation: dilation size for TDNN and attention conv1d layers (default: 1)
"""
def __init__(
self,
inp_filters: int,
attention_channels: int = 128,
kernel_size: int = 1,
dilation: int = 1,
eps: float = 1e-10,
):
super().__init__()
self.feat_in = 2 * inp_filters
self.attention_layer = nn.Sequential(
TDNNModule(inp_filters * 3, attention_channels, kernel_size=kernel_size, dilation=dilation),
nn.Tanh(),
nn.Conv1d(
in_channels=attention_channels,
out_channels=inp_filters,
kernel_size=kernel_size,
dilation=dilation,
),
)
self.eps = eps
def forward(self, x, length=None):
max_len = x.size(2)
if length is None:
length = torch.ones(x.shape[0], device=x.device)
mask, num_values = lens_to_mask(length, max_len=max_len, device=x.device)
# encoder statistics
mean, std = get_statistics_with_mask(x, mask / num_values)
mean = mean.unsqueeze(2).repeat(1, 1, max_len)
std = std.unsqueeze(2).repeat(1, 1, max_len)
attn = torch.cat([x, mean, std], dim=1)
# attention statistics
attn = self.attention_layer(attn) # attention pass
attn = attn.masked_fill(mask == 0, -inf)
alpha = F.softmax(attn, dim=2) # attention values, α
mu, sg = get_statistics_with_mask(x, alpha) # µ and ∑
# gather
return torch.cat((mu, sg), dim=1).unsqueeze(2)
class TDNNModule(nn.Module):
"""
Time Delayed Neural Module (TDNN) - 1D
input:
inp_filters: input filter channels for conv layer
out_filters: output filter channels for conv layer
kernel_size: kernel weight size for conv layer
dilation: dilation for conv layer
stride: stride for conv layer
padding: padding for conv layer (default None: chooses padding value such that input and output feature shape matches)
output:
tdnn layer output
"""
def __init__(
self,
inp_filters: int,
out_filters: int,
kernel_size: int = 1,
dilation: int = 1,
stride: int = 1,
padding: int = None,
):
super().__init__()
if padding is None:
padding = get_same_padding(kernel_size, stride=stride, dilation=dilation)
self.conv_layer = nn.Conv1d(
in_channels=inp_filters,
out_channels=out_filters,
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
)
self.activation = nn.ReLU()
self.bn = nn.BatchNorm1d(out_filters)
def forward(self, x, length=None):
x = self.conv_layer(x)
x = self.activation(x)
return self.bn(x)
class MaskedSEModule(nn.Module):
"""
Squeeze and Excite module implementation with conv1d layers
input:
inp_filters: input filter channel size
se_filters: intermediate squeeze and excite channel output and input size
out_filters: output filter channel size
kernel_size: kernel_size for both conv1d layers
dilation: dilation size for both conv1d layers
output:
squeeze and excite layer output
"""
def __init__(self, inp_filters: int, se_filters: int, out_filters: int, kernel_size: int = 1, dilation: int = 1):
super().__init__()
self.se_layer = nn.Sequential(
nn.Conv1d(
inp_filters,
se_filters,
kernel_size=kernel_size,
dilation=dilation,
),
nn.ReLU(),
nn.BatchNorm1d(se_filters),
nn.Conv1d(
se_filters,
out_filters,
kernel_size=kernel_size,
dilation=dilation,
),
nn.Sigmoid(),
)
def forward(self, input, length=None):
if length is None:
x = torch.mean(input, dim=2, keep_dim=True)
else:
max_len = input.size(2)
mask, num_values = lens_to_mask(length, max_len=max_len, device=input.device)
x = torch.sum((input * mask), dim=2, keepdim=True) / (num_values)
out = self.se_layer(x)
return out * input
class TDNNSEModule(nn.Module):
"""
Modified building SE_TDNN group module block from ECAPA implementation for faster training and inference
Reference: ECAPA-TDNN Embeddings for Speaker Diarization (https://arxiv.org/pdf/2104.01466.pdf)
inputs:
inp_filters: input filter channel size
out_filters: output filter channel size
group_scale: scale value to group wider conv channels (deafult:8)
se_channels: squeeze and excite output channel size (deafult: 1024/8= 128)
kernel_size: kernel_size for group conv1d layers (default: 1)
dilation: dilation size for group conv1d layers (default: 1)
"""
def __init__(
self,
inp_filters: int,
out_filters: int,
group_scale: int = 8,
se_channels: int = 128,
kernel_size: int = 1,
dilation: int = 1,
init_mode: str = 'xavier_uniform',
):
super().__init__()
self.out_filters = out_filters
padding_val = get_same_padding(kernel_size=kernel_size, dilation=dilation, stride=1)
group_conv = nn.Conv1d(
out_filters,
out_filters,
kernel_size=kernel_size,
dilation=dilation,
padding=padding_val,
groups=group_scale,
)
self.group_tdnn_block = nn.Sequential(
TDNNModule(inp_filters, out_filters, kernel_size=1, dilation=1),
group_conv,
nn.ReLU(),
nn.BatchNorm1d(out_filters),
TDNNModule(out_filters, out_filters, kernel_size=1, dilation=1),
)
self.se_layer = MaskedSEModule(out_filters, se_channels, out_filters)
self.apply(lambda x: init_weights(x, mode=init_mode))
def forward(self, input, length=None):
x = self.group_tdnn_block(input)
x = self.se_layer(x, length)
return x + input
class MaskedConv1d(nn.Module):
__constants__ = ["use_conv_mask", "real_out_channels", "heads"]
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
heads=-1,
bias=False,
use_mask=True,
quantize=False,
):
super(MaskedConv1d, self).__init__()
if not (heads == -1 or groups == in_channels):
raise ValueError("Only use heads for depthwise convolutions")
self.real_out_channels = out_channels
if heads != -1:
in_channels = heads
out_channels = heads
groups = heads
# preserve original padding
self._padding = padding
# if padding is a tuple/list, it is considered as asymmetric padding
if type(padding) in (tuple, list):
self.pad_layer = nn.ConstantPad1d(padding, value=0.0)
# reset padding for conv since pad_layer will handle this
padding = 0
else:
self.pad_layer = None
self.conv = nn.Conv1d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
)
self.use_mask = use_mask
self.heads = heads
# Calculations for "same" padding cache
self.same_padding = (self.conv.stride[0] == 1) and (
2 * self.conv.padding[0] == self.conv.dilation[0] * (self.conv.kernel_size[0] - 1)
)
if self.pad_layer is None:
self.same_padding_asymmetric = False
else:
self.same_padding_asymmetric = (self.conv.stride[0] == 1) and (
sum(self._padding) == self.conv.dilation[0] * (self.conv.kernel_size[0] - 1)
)
# `self.lens` caches consecutive integers from 0 to `self.max_len` that are used to compute the mask for a
# batch. Recomputed to bigger size as needed. Stored on a device of the latest batch lens.
if self.use_mask:
self.max_len = torch.tensor(0)
self.lens = torch.tensor(0)
def get_seq_len(self, lens):
if self.same_padding or self.same_padding_asymmetric:
return lens
if self.pad_layer is None:
return (
torch.div(
lens + 2 * self.conv.padding[0] - self.conv.dilation[0] * (self.conv.kernel_size[0] - 1) - 1,
self.conv.stride[0],
rounding_mode='trunc',
)
+ 1
)
else:
return (
torch.div(
lens + sum(self._padding) - self.conv.dilation[0] * (self.conv.kernel_size[0] - 1) - 1,
self.conv.stride[0],
rounding_mode='trunc',
)
+ 1
)
def forward(self, x, lens):
if self.use_mask:
# Generally will be called by ConvASREncoder, but kept as single gpu backup.
if x.size(2) > self.max_len:
self.update_masked_length(x.size(2), device=lens.device)
x = self.mask_input(x, lens)
# Update lengths
lens = self.get_seq_len(lens)
# asymmtric pad if necessary
if self.pad_layer is not None:
x = self.pad_layer(x)
sh = x.shape
if self.heads != -1:
x = x.view(-1, self.heads, sh[-1])
out = self.conv(x)
if self.heads != -1:
out = out.view(sh[0], self.real_out_channels, -1)
return out, lens
def update_masked_length(self, max_len, seq_range=None, device=None):
if seq_range is None:
self.lens, self.max_len = _masked_conv_init_lens(self.lens, max_len, self.max_len)
self.lens = self.lens.to(device)
else:
self.lens = seq_range
self.max_len = torch.tensor(max_len)
def mask_input(self, x, lens):
max_len = x.size(2)
mask = self.lens[:max_len].unsqueeze(0).to(lens.device) < lens.unsqueeze(1)
x = x * mask.unsqueeze(1).to(device=x.device)
return x
@torch.jit.script
def _masked_conv_init_lens(lens: torch.Tensor, current_maxlen: int, original_maxlen: torch.Tensor):
if current_maxlen > original_maxlen:
new_lens = torch.arange(current_maxlen)
new_max_lens = torch.tensor(current_maxlen)
else:
new_lens = lens
new_max_lens = original_maxlen
return new_lens, new_max_lens
def get_same_padding(kernel_size, stride, dilation) -> int:
if stride > 1 and dilation > 1:
raise ValueError("Only stride OR dilation may be greater than 1")
return (dilation * (kernel_size - 1)) // 2
def lens_to_mask(lens: List[int], max_len: int, device: str = None):
"""
outputs masking labels for list of lengths of audio features, with max length of any
mask as max_len
input:
lens: list of lens
max_len: max length of any audio feature
output:
mask: masked labels
num_values: sum of mask values for each feature (useful for computing statistics later)
"""
lens_mat = torch.arange(max_len).to(device)
mask = lens_mat[:max_len].unsqueeze(0) < lens.unsqueeze(1)
mask = mask.unsqueeze(1)
num_values = torch.sum(mask, dim=2, keepdim=True)
return mask, num_values
def get_statistics_with_mask(x: torch.Tensor, m: torch.Tensor, dim: int = 2, eps: float = 1e-10):
"""
compute mean and standard deviation of input(x) provided with its masking labels (m)
input:
x: feature input
m: averaged mask labels
output:
mean: mean of input features
std: stadard deviation of input features
"""
mean = torch.sum((m * x), dim=dim)
std = torch.sqrt((m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps))
return mean, std
@torch.jit.script_if_tracing
def make_seq_mask_like(
like: torch.Tensor, lengths: torch.Tensor, valid_ones: bool = True, time_dim: int = -1
) -> torch.Tensor:
mask = torch.arange(like.shape[time_dim], device=like.device).repeat(lengths.shape[0], 1).lt(lengths.unsqueeze(-1))
# Match number of dims in `like` tensor
for _ in range(like.dim() - mask.dim()):
mask = mask.unsqueeze(1)
# If time dim != -1, transpose to proper dim.
if time_dim != -1:
mask = mask.transpose(time_dim, -1)
if not valid_ones:
mask = ~mask
return mask
def init_weights(m, mode: Optional[str] = 'xavier_uniform'):
if isinstance(m, MaskedConv1d):
init_weights(m.conv, mode)
if isinstance(m, (nn.Conv1d, nn.Linear)):
if mode is not None:
if mode == 'xavier_uniform':
nn.init.xavier_uniform_(m.weight, gain=1.0)
elif mode == 'xavier_normal':
nn.init.xavier_normal_(m.weight, gain=1.0)
elif mode == 'kaiming_uniform':
nn.init.kaiming_uniform_(m.weight, nonlinearity="relu")
elif mode == 'kaiming_normal':
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
elif mode == 'tds_uniform':
tds_uniform_(m.weight)
elif mode == 'tds_normal':
tds_normal_(m.weight)
else:
raise ValueError("Unknown Initialization mode: {0}".format(mode))
elif isinstance(m, nn.BatchNorm1d):
if m.track_running_stats:
m.running_mean.zero_()
m.running_var.fill_(1)
m.num_batches_tracked.zero_()
if m.affine:
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
def tds_uniform_(tensor, mode='fan_in'):
"""
Uniform Initialization from the paper [Sequence-to-Sequence Speech Recognition with Time-Depth Separable Convolutions](https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2460.pdf)
Normalized to -
.. math::
\\text{bound} = \\text{2} \\times \\sqrt{\\frac{1}{\\text{fan\\_mode}}}
Args:
tensor: an n-dimensional `torch.Tensor`
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
preserves the magnitude of the variance of the weights in the
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
backwards pass.
"""
fan = _calculate_correct_fan(tensor, mode)
gain = 2.0 # sqrt(4.0) = 2
std = gain / math.sqrt(fan) # sqrt(4.0 / fan_in)
bound = std # Calculate uniform bounds from standard deviation
with torch.no_grad():
return tensor.uniform_(-bound, bound)
def tds_normal_(tensor, mode='fan_in'):
"""
Normal Initialization from the paper [Sequence-to-Sequence Speech Recognition with Time-Depth Separable Convolutions](https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2460.pdf)
Normalized to -
.. math::
\\text{bound} = \\text{2} \\times \\sqrt{\\frac{1}{\\text{fan\\_mode}}}
Args:
tensor: an n-dimensional `torch.Tensor`
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
preserves the magnitude of the variance of the weights in the
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
backwards pass.
"""
fan = _calculate_correct_fan(tensor, mode)
gain = 2.0
std = gain / math.sqrt(fan) # sqrt(4.0 / fan_in)
bound = std # Calculate uniform bounds from standard deviation
with torch.no_grad():
return tensor.normal_(0.0, bound) |