--- datasets: - voxceleb library_name: transformers metrics: - accuracy tags: - audio-classification - generated_from_trainer model-index: - name: ecapa-tdnn-voxceleb1-c512-aam results: - task: type: audio-classification name: Audio Classification dataset: name: confit/voxceleb type: voxceleb config: verification split: train args: verification metrics: - type: accuracy value: 0.8030272452068618 name: Accuracy --- # ecapa-tdnn-voxceleb1-c512-aam This model is a fine-tuned version of [](https://huggingface.co/) on the confit/voxceleb dataset. It achieves the following results on the evaluation set: - Loss: 4.7003 - Accuracy: 0.8030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 256 - eval_batch_size: 1 - seed: 914 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 11.3851 | 1.0 | 523 | 11.0293 | 0.1806 | | 9.7596 | 2.0 | 1046 | 9.1401 | 0.3850 | | 8.7136 | 3.0 | 1569 | 7.8821 | 0.5242 | | 7.848 | 4.0 | 2092 | 6.9451 | 0.6144 | | 7.1912 | 5.0 | 2615 | 6.2630 | 0.6821 | | 6.6763 | 6.0 | 3138 | 5.7182 | 0.7292 | | 6.3112 | 7.0 | 3661 | 5.2653 | 0.7632 | | 6.0255 | 8.0 | 4184 | 4.9663 | 0.7826 | | 5.8091 | 9.0 | 4707 | 4.7787 | 0.7957 | | 5.7269 | 10.0 | 5230 | 4.7003 | 0.8030 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.0.0+cu117 - Datasets 3.2.0 - Tokenizers 0.21.0