File size: 2,369 Bytes
040cde3
7f883e2
 
 
 
177b9da
 
 
 
995a299
 
ddf2069
 
7f883e2
177b9da
ddf2069
 
 
 
 
 
 
177b9da
 
 
040cde3
 
995a299
 
040cde3
995a299
040cde3
ddf2069
995a299
177b9da
 
040cde3
995a299
040cde3
995a299
040cde3
995a299
040cde3
995a299
040cde3
995a299
040cde3
995a299
040cde3
995a299
040cde3
995a299
040cde3
995a299
177b9da
995a299
 
 
 
 
 
 
 
040cde3
995a299
040cde3
995a299
 
177b9da
 
 
 
 
 
 
 
 
 
040cde3
 
995a299
040cde3
995a299
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
library_name: transformers
tags:
- audio-classification
- generated_from_trainer
datasets:
- voxceleb
metrics:
- accuracy
model-index:
- name: ecapa-tdnn-voxceleb1-c512-aam
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: confit/voxceleb
      type: voxceleb
      config: verification
      split: train
      args: verification
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9757901815736382
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ecapa-tdnn-voxceleb1-c512-aam

This model is a fine-tuned version of [](https://huggingface.co/) on the confit/voxceleb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5840
- Accuracy: 0.9758

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 256
- eval_batch_size: 1
- seed: 914
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 9.047         | 1.0   | 575  | 8.3662          | 0.4304   |
| 5.3508        | 2.0   | 1150 | 4.0252          | 0.8191   |
| 3.3124        | 3.0   | 1725 | 2.1083          | 0.9260   |
| 2.3212        | 4.0   | 2300 | 1.2224          | 0.9435   |
| 1.6276        | 5.0   | 2875 | 0.8229          | 0.9677   |
| 1.1418        | 6.0   | 3450 | 0.5840          | 0.9758   |
| 1.0484        | 7.0   | 4025 | 0.5781          | 0.9738   |
| 0.0           | 8.0   | 4600 | nan             | 0.0007   |
| 0.0           | 9.0   | 5175 | nan             | 0.0007   |
| 0.0           | 10.0  | 5750 | nan             | 0.0007   |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.0.0+cu117
- Datasets 3.2.0
- Tokenizers 0.21.0