--- license: mit library_name: transformers pipeline_tag: text-generation base_model: - nvidia/Llama-3.1-Minitron-4B-Depth-Base datasets: - BAAI/Infinity-Instruct --- We fine-tune `nvidia/Llama-3.1-Minitron-4B-Depth-Base` with the LLM-Neo method, which combines LoRA and KD. Training data is sampled from `BAAI/Infinity-Instruct` for 100k lines. This repository contains the model described in the paper [LLM-Neo: Parameter Efficient Knowledge Distillation for Large Language Models](https://hf.co/papers/2411.06839). The project page is available [here](https://huggingface.co/collections/yang31210999/llm-neo-66e3c882f5579b829ff57eba) and the Github repository is available [here](https://github.com/yang3121099/LLM-Neo). ## Basic Usage This example demonstrates generating text using the model. You'll need to install the necessary libraries first: `pip install transformers`. ```python from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig import torch model_path = "yang31210999/Llama-3.1-Minitron-4B-Depth-Neo-10w" tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16) prompt = "Once upon a time" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generation_config = GenerationConfig( max_new_tokens=50, do_sample=True, temperature=0.7 ) outputs = model.generate(**inputs, generation_config=generation_config) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] print(generated_text) ``` ## Benchmarks In this section, we report the results for `Llama-3.1-Minitron-4B-Depth-Neo-10w` on standard automatic benchmarks. For all the evaluations, we use the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) library. ### Evaluation results
Category Benchmark Version n-shot Metric Value Stderr
BBH BBH (General) N/A 3 exact_match 0.4729 ± 0.0055
BBH (Boolean Expressions) 2 3 exact_match 0.8120 ± 0.0248
BBH (Date Understanding) 2 3 exact_match 0.6600 ± 0.0300
CEVAL CEVAL (General) N/A 0 acc 0.4413 ± 0.0135
CEVAL (Accountant) 1 0 acc 0.3469 ± 0.0687
CEVAL (Advanced Mathematics) 1 0 acc 0.4737 ± 0.1177
CEVAL (Art Studies) 1 0 acc 0.4545 ± 0.0880
MMLU MMLU (General) N/A 0 acc 0.6048 ± 0.0039
MMLU (Humanities) N/A 0 acc 0.5552 ± 0.0067
MMLU (STEM) N/A 0 acc 0.5214 ± 0.0086
CMMLU CMMLU (General) N/A 0 acc 0.3548 ± 0.0044
CMMLU (Normalized) N/A 0 acc_norm 0.3548 ± 0.0044