--- library_name: transformers license: other base_model: trl-lib/qwen1.5-0.5b-sft tags: - alignment-handbook - trl - simpo - generated_from_trainer - trl - simpo - generated_from_trainer datasets: - yakazimir/ultrafeedback_binarized model-index: - name: qwen_unl_entropy results: [] --- # qwen_unl_entropy This model is a fine-tuned version of [trl-lib/qwen1.5-0.5b-sft](https://huggingface.co/trl-lib/qwen1.5-0.5b-sft) on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 1.6475 - Rewards/chosen: -1.3030 - Rewards/rejected: -1.4992 - Rewards/accuracies: 0.5712 - Rewards/margins: 0.1962 - Logps/rejected: -1.4992 - Logps/chosen: -1.3030 - Logits/rejected: 0.0833 - Logits/chosen: 0.0165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.6549 | 0.2141 | 400 | 1.6939 | -1.3375 | -1.4631 | 0.5564 | 0.1256 | -1.4631 | -1.3375 | 0.3664 | 0.2799 | | 1.6692 | 0.4282 | 800 | 1.6718 | -1.3151 | -1.4532 | 0.5579 | 0.1381 | -1.4532 | -1.3151 | 0.3708 | 0.2889 | | 1.6206 | 0.6422 | 1200 | 1.6640 | -1.3083 | -1.4522 | 0.5564 | 0.1438 | -1.4522 | -1.3083 | 0.3523 | 0.2714 | | 1.6566 | 0.8563 | 1600 | 1.6600 | -1.3096 | -1.4585 | 0.5593 | 0.1488 | -1.4585 | -1.3096 | 0.3578 | 0.2764 | | 1.7104 | 1.0704 | 2000 | 1.6553 | -1.3006 | -1.4569 | 0.5660 | 0.1563 | -1.4569 | -1.3006 | 0.2528 | 0.1781 | | 1.6123 | 1.2845 | 2400 | 1.6521 | -1.3029 | -1.4743 | 0.5668 | 0.1713 | -1.4743 | -1.3029 | 0.1650 | 0.0956 | | 1.6688 | 1.4986 | 2800 | 1.6486 | -1.3000 | -1.4729 | 0.5690 | 0.1729 | -1.4729 | -1.3000 | 0.1751 | 0.1050 | | 1.6012 | 1.7127 | 3200 | 1.6495 | -1.3009 | -1.4722 | 0.5668 | 0.1713 | -1.4722 | -1.3009 | 0.2139 | 0.1401 | | 1.5646 | 1.9267 | 3600 | 1.6478 | -1.2987 | -1.4778 | 0.5705 | 0.1791 | -1.4778 | -1.2987 | 0.1771 | 0.1052 | | 1.5351 | 2.1408 | 4000 | 1.6470 | -1.3020 | -1.4952 | 0.5712 | 0.1932 | -1.4952 | -1.3020 | 0.1238 | 0.0547 | | 1.5307 | 2.3549 | 4400 | 1.6469 | -1.3054 | -1.5043 | 0.5712 | 0.1988 | -1.5043 | -1.3054 | 0.0587 | -0.0064 | | 1.5433 | 2.5690 | 4800 | 1.6472 | -1.3037 | -1.5017 | 0.5727 | 0.1980 | -1.5017 | -1.3037 | 0.1609 | 0.0880 | | 1.5671 | 2.7831 | 5200 | 1.6473 | -1.3030 | -1.4994 | 0.5720 | 0.1964 | -1.4994 | -1.3030 | 0.0927 | 0.0252 | | 1.5482 | 2.9972 | 5600 | 1.6475 | -1.3030 | -1.4992 | 0.5712 | 0.1962 | -1.4992 | -1.3030 | 0.0833 | 0.0165 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1