yahyaabd commited on
Commit
218423f
·
verified ·
1 Parent(s): 1bb3f00

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,518 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:110773
8
+ - loss:ContrastiveLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: average monthly net wage/salary, employees, by province and occupation
12
+ (rupiah), 2018
13
+ sentences:
14
+ - '[Seri 2000] Laju Pertumbuhan PDB Triwulanan Atas Dasar Harga Konstan 2000 Terhadap
15
+ Triwulan Sebelumnya, 2001-2014'
16
+ - IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
17
+ 2012-2014 (2012=100)
18
+ - Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Kelompok Umur
19
+ dan Lapangan Pekerjaan Utama di 9 Sektor (Rupiah), 2017
20
+ - source_sentence: 'data belanja dan konsumsi per orang di jambi, 2020: fokus pada
21
+ makanan dan tingkat pengeluaran'
22
+ sentences:
23
+ - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
24
+ dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023
25
+ - Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi
26
+ yang Ditamatkan (ribu rupiah), 2017
27
+ - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
28
+ dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Jawa Timur, 2018-2023
29
+ - source_sentence: 'ALIRAN DANA RUPIAH: Q1 2008'
30
+ sentences:
31
+ - Sistem Neraca Sosial Ekonomi Indonesia Tahun 2022 dalam Format SNA 1968 (65x65)
32
+ - Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Provinsi dan
33
+ Jenis Pekerjaan Utama, 2024
34
+ - Impor Besi dan Baja Menurut Negara Asal Utama, 2017-2023
35
+ - source_sentence: 'Aliran Wdana Rupiah: Q1 2008'
36
+ sentences:
37
+ - Ekspor Karet Remah Menurut Negara Tujuan Utama, 2012-2023
38
+ - Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Kelompok Umur
39
+ dan Lapangan Pekerjaan Utama di 17 Sektor (Rupiah), 2018
40
+ - Sistem Neraca Sosial Ekonomi Indonesia Tahun 2022 dalam Format SNA 1968 (65x65)
41
+ - source_sentence: 'Aliran dana Rupiah: Q1 2008'
42
+ sentences:
43
+ - Ringkasan Neraca Arus Dana, Triwulan II, 2011*), (Miliar Rupiah)
44
+ - Ringkasan Neraca Arus Dana, 2012 (Miliar Rupiah)
45
+ - IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
46
+ 2012-2014 (2012=100)
47
+ datasets:
48
+ - yahyaabd/query-pos-neg-doc-pairs-statictable
49
+ pipeline_tag: sentence-similarity
50
+ library_name: sentence-transformers
51
+ metrics:
52
+ - cosine_accuracy
53
+ - cosine_accuracy_threshold
54
+ - cosine_f1
55
+ - cosine_f1_threshold
56
+ - cosine_precision
57
+ - cosine_recall
58
+ - cosine_ap
59
+ - cosine_mcc
60
+ model-index:
61
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
62
+ results:
63
+ - task:
64
+ type: binary-classification
65
+ name: Binary Classification
66
+ dataset:
67
+ name: allstats semantic mini v1 test
68
+ type: allstats-semantic-mini-v1_test
69
+ metrics:
70
+ - type: cosine_accuracy
71
+ value: 0.9678628590683177
72
+ name: Cosine Accuracy
73
+ - type: cosine_accuracy_threshold
74
+ value: 0.7482147812843323
75
+ name: Cosine Accuracy Threshold
76
+ - type: cosine_f1
77
+ value: 0.9677936769237264
78
+ name: Cosine F1
79
+ - type: cosine_f1_threshold
80
+ value: 0.7444144487380981
81
+ name: Cosine F1 Threshold
82
+ - type: cosine_precision
83
+ value: 0.9595714405290031
84
+ name: Cosine Precision
85
+ - type: cosine_recall
86
+ value: 0.976158038147139
87
+ name: Cosine Recall
88
+ - type: cosine_ap
89
+ value: 0.9921512853632306
90
+ name: Cosine Ap
91
+ - type: cosine_mcc
92
+ value: 0.9358669477790009
93
+ name: Cosine Mcc
94
+ - task:
95
+ type: binary-classification
96
+ name: Binary Classification
97
+ dataset:
98
+ name: allstats semantic mini v1 dev
99
+ type: allstats-semantic-mini-v1_dev
100
+ metrics:
101
+ - type: cosine_accuracy
102
+ value: 0.9678491772924294
103
+ name: Cosine Accuracy
104
+ - type: cosine_accuracy_threshold
105
+ value: 0.7902499437332153
106
+ name: Cosine Accuracy Threshold
107
+ - type: cosine_f1
108
+ value: 0.9673587968896863
109
+ name: Cosine F1
110
+ - type: cosine_f1_threshold
111
+ value: 0.7874833345413208
112
+ name: Cosine F1 Threshold
113
+ - type: cosine_precision
114
+ value: 0.9616887529731566
115
+ name: Cosine Precision
116
+ - type: cosine_recall
117
+ value: 0.9730960976448341
118
+ name: Cosine Recall
119
+ - type: cosine_ap
120
+ value: 0.9930288231258318
121
+ name: Cosine Ap
122
+ - type: cosine_mcc
123
+ value: 0.9357491510325107
124
+ name: Cosine Mcc
125
+ ---
126
+
127
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
128
+
129
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [query-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
130
+
131
+ ## Model Details
132
+
133
+ ### Model Description
134
+ - **Model Type:** Sentence Transformer
135
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
136
+ - **Maximum Sequence Length:** 128 tokens
137
+ - **Output Dimensionality:** 384 dimensions
138
+ - **Similarity Function:** Cosine Similarity
139
+ - **Training Dataset:**
140
+ - [query-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-pos-neg-doc-pairs-statictable)
141
+ <!-- - **Language:** Unknown -->
142
+ <!-- - **License:** Unknown -->
143
+
144
+ ### Model Sources
145
+
146
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
147
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
148
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
149
+
150
+ ### Full Model Architecture
151
+
152
+ ```
153
+ SentenceTransformer(
154
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
155
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
156
+ )
157
+ ```
158
+
159
+ ## Usage
160
+
161
+ ### Direct Usage (Sentence Transformers)
162
+
163
+ First install the Sentence Transformers library:
164
+
165
+ ```bash
166
+ pip install -U sentence-transformers
167
+ ```
168
+
169
+ Then you can load this model and run inference.
170
+ ```python
171
+ from sentence_transformers import SentenceTransformer
172
+
173
+ # Download from the 🤗 Hub
174
+ model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-7")
175
+ # Run inference
176
+ sentences = [
177
+ 'Aliran dana Rupiah: Q1 2008',
178
+ 'IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), 2012-2014 (2012=100)',
179
+ 'Ringkasan Neraca Arus Dana, 2012 (Miliar Rupiah)',
180
+ ]
181
+ embeddings = model.encode(sentences)
182
+ print(embeddings.shape)
183
+ # [3, 384]
184
+
185
+ # Get the similarity scores for the embeddings
186
+ similarities = model.similarity(embeddings, embeddings)
187
+ print(similarities.shape)
188
+ # [3, 3]
189
+ ```
190
+
191
+ <!--
192
+ ### Direct Usage (Transformers)
193
+
194
+ <details><summary>Click to see the direct usage in Transformers</summary>
195
+
196
+ </details>
197
+ -->
198
+
199
+ <!--
200
+ ### Downstream Usage (Sentence Transformers)
201
+
202
+ You can finetune this model on your own dataset.
203
+
204
+ <details><summary>Click to expand</summary>
205
+
206
+ </details>
207
+ -->
208
+
209
+ <!--
210
+ ### Out-of-Scope Use
211
+
212
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
213
+ -->
214
+
215
+ ## Evaluation
216
+
217
+ ### Metrics
218
+
219
+ #### Binary Classification
220
+
221
+ * Datasets: `allstats-semantic-mini-v1_test` and `allstats-semantic-mini-v1_dev`
222
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
223
+
224
+ | Metric | allstats-semantic-mini-v1_test | allstats-semantic-mini-v1_dev |
225
+ |:--------------------------|:-------------------------------|:------------------------------|
226
+ | cosine_accuracy | 0.9679 | 0.9678 |
227
+ | cosine_accuracy_threshold | 0.7482 | 0.7902 |
228
+ | cosine_f1 | 0.9678 | 0.9674 |
229
+ | cosine_f1_threshold | 0.7444 | 0.7875 |
230
+ | cosine_precision | 0.9596 | 0.9617 |
231
+ | cosine_recall | 0.9762 | 0.9731 |
232
+ | **cosine_ap** | **0.9922** | **0.993** |
233
+ | cosine_mcc | 0.9359 | 0.9357 |
234
+
235
+ <!--
236
+ ## Bias, Risks and Limitations
237
+
238
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
239
+ -->
240
+
241
+ <!--
242
+ ### Recommendations
243
+
244
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
245
+ -->
246
+
247
+ ## Training Details
248
+
249
+ ### Training Dataset
250
+
251
+ #### query-pos-neg-doc-pairs-statictable
252
+
253
+ * Dataset: [query-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-pos-neg-doc-pairs-statictable) at [a31b58d](https://huggingface.co/datasets/yahyaabd/query-pos-neg-doc-pairs-statictable/tree/a31b58d221edcddb16274a04b2fafe56df68801a)
254
+ * Size: 110,773 training samples
255
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
256
+ * Approximate statistics based on the first 1000 samples:
257
+ | | query | doc | label |
258
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
259
+ | type | string | string | int |
260
+ | details | <ul><li>min: 9 tokens</li><li>mean: 21.22 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 28.24 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>0: ~43.90%</li><li>1: ~56.10%</li></ul> |
261
+ * Samples:
262
+ | query | doc | label |
263
+ |:-----------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:---------------|
264
+ | <code>Data orang yang naik/turun kapal, di pelabuhan yang dikelola maupun tidak, sekitar 2015</code> | <code>Tabel Input-Output Indonesia Transaksi Total Atas Dasar Harga Dasar (185 Produk), 2016 (Juta Rupiah)</code> | <code>0</code> |
265
+ | <code>data orang yang naik/turun kapal, di pelabuhan yang dikelola maupun tidak, sekitar 2015</code> | <code>Tabel Input-Output Indonesia Transaksi Total Atas Dasar Harga Dasar (185 Produk), 2016 (Juta Rupiah)</code> | <code>0</code> |
266
+ | <code>DATA ORANG YANG NAIK/TURUN KAPAL, DI PELABUHAN YANG DIKELOLA MAUPUN TIDAK, SEKITAR 2015</code> | <code>Tabel Input-Output Indonesia Transaksi Total Atas Dasar Harga Dasar (185 Produk), 2016 (Juta Rupiah)</code> | <code>0</code> |
267
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
268
+ ```json
269
+ {
270
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
271
+ "margin": 0.5,
272
+ "size_average": true
273
+ }
274
+ ```
275
+
276
+ ### Evaluation Dataset
277
+
278
+ #### query-pos-neg-doc-pairs-statictable
279
+
280
+ * Dataset: [query-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-pos-neg-doc-pairs-statictable) at [a31b58d](https://huggingface.co/datasets/yahyaabd/query-pos-neg-doc-pairs-statictable/tree/a31b58d221edcddb16274a04b2fafe56df68801a)
281
+ * Size: 23,763 evaluation samples
282
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
283
+ * Approximate statistics based on the first 1000 samples:
284
+ | | query | doc | label |
285
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
286
+ | type | string | string | int |
287
+ | details | <ul><li>min: 7 tokens</li><li>mean: 20.75 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 27.44 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~50.20%</li><li>1: ~49.80%</li></ul> |
288
+ * Samples:
289
+ | query | doc | label |
290
+ |:------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|:---------------|
291
+ | <code>Cek penghasilan bulanan (gaji bersih) buruh/pegawai, per provinsi dan jenis pekerjaannya, 2019</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama, 2021</code> | <code>1</code> |
292
+ | <code>cek penghasilan bulanan (gaji bersih) buruh/pegawai, per provinsi dan jenis pekerjaannya, 2019</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama, 2021</code> | <code>1</code> |
293
+ | <code>CEK PENGHASILAN BULANAN (GAJI BERSIH) BURUH/PEGAWAI, PER PROVINSI DAN JENIS PEKERJAANNYA, 2019</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama, 2021</code> | <code>1</code> |
294
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
295
+ ```json
296
+ {
297
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
298
+ "margin": 0.5,
299
+ "size_average": true
300
+ }
301
+ ```
302
+
303
+ ### Training Hyperparameters
304
+ #### Non-Default Hyperparameters
305
+
306
+ - `eval_strategy`: steps
307
+ - `per_device_train_batch_size`: 64
308
+ - `per_device_eval_batch_size`: 64
309
+ - `num_train_epochs`: 1
310
+ - `warmup_ratio`: 0.2
311
+ - `fp16`: True
312
+ - `load_best_model_at_end`: True
313
+ - `eval_on_start`: True
314
+
315
+ #### All Hyperparameters
316
+ <details><summary>Click to expand</summary>
317
+
318
+ - `overwrite_output_dir`: False
319
+ - `do_predict`: False
320
+ - `eval_strategy`: steps
321
+ - `prediction_loss_only`: True
322
+ - `per_device_train_batch_size`: 64
323
+ - `per_device_eval_batch_size`: 64
324
+ - `per_gpu_train_batch_size`: None
325
+ - `per_gpu_eval_batch_size`: None
326
+ - `gradient_accumulation_steps`: 1
327
+ - `eval_accumulation_steps`: None
328
+ - `torch_empty_cache_steps`: None
329
+ - `learning_rate`: 5e-05
330
+ - `weight_decay`: 0.0
331
+ - `adam_beta1`: 0.9
332
+ - `adam_beta2`: 0.999
333
+ - `adam_epsilon`: 1e-08
334
+ - `max_grad_norm`: 1.0
335
+ - `num_train_epochs`: 1
336
+ - `max_steps`: -1
337
+ - `lr_scheduler_type`: linear
338
+ - `lr_scheduler_kwargs`: {}
339
+ - `warmup_ratio`: 0.2
340
+ - `warmup_steps`: 0
341
+ - `log_level`: passive
342
+ - `log_level_replica`: warning
343
+ - `log_on_each_node`: True
344
+ - `logging_nan_inf_filter`: True
345
+ - `save_safetensors`: True
346
+ - `save_on_each_node`: False
347
+ - `save_only_model`: False
348
+ - `restore_callback_states_from_checkpoint`: False
349
+ - `no_cuda`: False
350
+ - `use_cpu`: False
351
+ - `use_mps_device`: False
352
+ - `seed`: 42
353
+ - `data_seed`: None
354
+ - `jit_mode_eval`: False
355
+ - `use_ipex`: False
356
+ - `bf16`: False
357
+ - `fp16`: True
358
+ - `fp16_opt_level`: O1
359
+ - `half_precision_backend`: auto
360
+ - `bf16_full_eval`: False
361
+ - `fp16_full_eval`: False
362
+ - `tf32`: None
363
+ - `local_rank`: 0
364
+ - `ddp_backend`: None
365
+ - `tpu_num_cores`: None
366
+ - `tpu_metrics_debug`: False
367
+ - `debug`: []
368
+ - `dataloader_drop_last`: False
369
+ - `dataloader_num_workers`: 0
370
+ - `dataloader_prefetch_factor`: None
371
+ - `past_index`: -1
372
+ - `disable_tqdm`: False
373
+ - `remove_unused_columns`: True
374
+ - `label_names`: None
375
+ - `load_best_model_at_end`: True
376
+ - `ignore_data_skip`: False
377
+ - `fsdp`: []
378
+ - `fsdp_min_num_params`: 0
379
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
380
+ - `fsdp_transformer_layer_cls_to_wrap`: None
381
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
382
+ - `deepspeed`: None
383
+ - `label_smoothing_factor`: 0.0
384
+ - `optim`: adamw_torch
385
+ - `optim_args`: None
386
+ - `adafactor`: False
387
+ - `group_by_length`: False
388
+ - `length_column_name`: length
389
+ - `ddp_find_unused_parameters`: None
390
+ - `ddp_bucket_cap_mb`: None
391
+ - `ddp_broadcast_buffers`: False
392
+ - `dataloader_pin_memory`: True
393
+ - `dataloader_persistent_workers`: False
394
+ - `skip_memory_metrics`: True
395
+ - `use_legacy_prediction_loop`: False
396
+ - `push_to_hub`: False
397
+ - `resume_from_checkpoint`: None
398
+ - `hub_model_id`: None
399
+ - `hub_strategy`: every_save
400
+ - `hub_private_repo`: None
401
+ - `hub_always_push`: False
402
+ - `gradient_checkpointing`: False
403
+ - `gradient_checkpointing_kwargs`: None
404
+ - `include_inputs_for_metrics`: False
405
+ - `include_for_metrics`: []
406
+ - `eval_do_concat_batches`: True
407
+ - `fp16_backend`: auto
408
+ - `push_to_hub_model_id`: None
409
+ - `push_to_hub_organization`: None
410
+ - `mp_parameters`:
411
+ - `auto_find_batch_size`: False
412
+ - `full_determinism`: False
413
+ - `torchdynamo`: None
414
+ - `ray_scope`: last
415
+ - `ddp_timeout`: 1800
416
+ - `torch_compile`: False
417
+ - `torch_compile_backend`: None
418
+ - `torch_compile_mode`: None
419
+ - `dispatch_batches`: None
420
+ - `split_batches`: None
421
+ - `include_tokens_per_second`: False
422
+ - `include_num_input_tokens_seen`: False
423
+ - `neftune_noise_alpha`: None
424
+ - `optim_target_modules`: None
425
+ - `batch_eval_metrics`: False
426
+ - `eval_on_start`: True
427
+ - `use_liger_kernel`: False
428
+ - `eval_use_gather_object`: False
429
+ - `average_tokens_across_devices`: False
430
+ - `prompts`: None
431
+ - `batch_sampler`: batch_sampler
432
+ - `multi_dataset_batch_sampler`: proportional
433
+
434
+ </details>
435
+
436
+ ### Training Logs
437
+ | Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1_test_cosine_ap | allstats-semantic-mini-v1_dev_cosine_ap |
438
+ |:----------:|:--------:|:-------------:|:---------------:|:----------------------------------------:|:---------------------------------------:|
439
+ | -1 | -1 | - | - | 0.8699 | - |
440
+ | 0 | 0 | - | 0.0489 | - | 0.8658 |
441
+ | 0.0578 | 100 | 0.0222 | 0.0101 | - | 0.9458 |
442
+ | 0.1155 | 200 | 0.0087 | 0.0073 | - | 0.9631 |
443
+ | 0.1733 | 300 | 0.007 | 0.0059 | - | 0.9710 |
444
+ | 0.2311 | 400 | 0.0056 | 0.0049 | - | 0.9828 |
445
+ | 0.2889 | 500 | 0.0045 | 0.0044 | - | 0.9837 |
446
+ | 0.3466 | 600 | 0.0042 | 0.0041 | - | 0.9862 |
447
+ | 0.4044 | 700 | 0.0038 | 0.0038 | - | 0.9888 |
448
+ | 0.4622 | 800 | 0.0037 | 0.0037 | - | 0.9890 |
449
+ | 0.5199 | 900 | 0.0029 | 0.0036 | - | 0.9889 |
450
+ | 0.5777 | 1000 | 0.0031 | 0.0034 | - | 0.9907 |
451
+ | 0.6355 | 1100 | 0.0029 | 0.0033 | - | 0.9923 |
452
+ | 0.6932 | 1200 | 0.0025 | 0.0034 | - | 0.9922 |
453
+ | 0.7510 | 1300 | 0.0025 | 0.0033 | - | 0.9929 |
454
+ | 0.8088 | 1400 | 0.0024 | 0.0033 | - | 0.9928 |
455
+ | 0.8666 | 1500 | 0.0022 | 0.0033 | - | 0.9926 |
456
+ | 0.9243 | 1600 | 0.0023 | 0.0033 | - | 0.9929 |
457
+ | **0.9821** | **1700** | **0.0022** | **0.0032** | **-** | **0.993** |
458
+ | -1 | -1 | - | - | 0.9922 | - |
459
+
460
+ * The bold row denotes the saved checkpoint.
461
+
462
+ ### Framework Versions
463
+ - Python: 3.10.12
464
+ - Sentence Transformers: 3.4.0
465
+ - Transformers: 4.48.1
466
+ - PyTorch: 2.5.1+cu124
467
+ - Accelerate: 1.3.0
468
+ - Datasets: 3.2.0
469
+ - Tokenizers: 0.21.0
470
+
471
+ ## Citation
472
+
473
+ ### BibTeX
474
+
475
+ #### Sentence Transformers
476
+ ```bibtex
477
+ @inproceedings{reimers-2019-sentence-bert,
478
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
479
+ author = "Reimers, Nils and Gurevych, Iryna",
480
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
481
+ month = "11",
482
+ year = "2019",
483
+ publisher = "Association for Computational Linguistics",
484
+ url = "https://arxiv.org/abs/1908.10084",
485
+ }
486
+ ```
487
+
488
+ #### ContrastiveLoss
489
+ ```bibtex
490
+ @inproceedings{hadsell2006dimensionality,
491
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
492
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
493
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
494
+ year={2006},
495
+ volume={2},
496
+ number={},
497
+ pages={1735-1742},
498
+ doi={10.1109/CVPR.2006.100}
499
+ }
500
+ ```
501
+
502
+ <!--
503
+ ## Glossary
504
+
505
+ *Clearly define terms in order to be accessible across audiences.*
506
+ -->
507
+
508
+ <!--
509
+ ## Model Card Authors
510
+
511
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
512
+ -->
513
+
514
+ <!--
515
+ ## Model Card Contact
516
+
517
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
518
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-miniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee8bd4cf31558551f379b564c43f5c4b04687875fa7854ee30384d86edecfaee
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260