y22ma commited on
Commit
0227876
·
1 Parent(s): eee9a7c

Implements Kosmos2 handler

Browse files
Files changed (1) hide show
  1. handler.py +187 -94
handler.py CHANGED
@@ -2,13 +2,14 @@ from typing import Dict, List, Any
2
  import base64
3
  from PIL import Image
4
  from io import BytesIO
5
- from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
6
- import torch
7
-
8
-
9
  import numpy as np
 
 
 
 
 
10
  import cv2
11
- import controlnet_hinter
12
 
13
  # set device
14
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
@@ -17,109 +18,201 @@ if device.type != 'cuda':
17
  # set mixed precision dtype
18
  dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
19
 
20
- # controlnet mapping for controlnet id and control hinter
21
- CONTROLNET_MAPPING = {
22
- "canny_edge": {
23
- "model_id": "lllyasviel/sd-controlnet-canny",
24
- "hinter": controlnet_hinter.hint_canny
25
- },
26
- "pose": {
27
- "model_id": "lllyasviel/sd-controlnet-openpose",
28
- "hinter": controlnet_hinter.hint_openpose
29
- },
30
- "depth": {
31
- "model_id": "lllyasviel/sd-controlnet-depth",
32
- "hinter": controlnet_hinter.hint_depth
33
- },
34
- "scribble": {
35
- "model_id": "lllyasviel/sd-controlnet-scribble",
36
- "hinter": controlnet_hinter.hint_scribble,
37
- },
38
- "segmentation": {
39
- "model_id": "lllyasviel/sd-controlnet-seg",
40
- "hinter": controlnet_hinter.hint_segmentation,
41
- },
42
- "normal": {
43
- "model_id": "lllyasviel/sd-controlnet-normal",
44
- "hinter": controlnet_hinter.hint_normal,
45
- },
46
- "hed": {
47
- "model_id": "lllyasviel/sd-controlnet-hed",
48
- "hinter": controlnet_hinter.hint_hed,
49
- },
50
- "hough": {
51
- "model_id": "lllyasviel/sd-controlnet-mlsd",
52
- "hinter": controlnet_hinter.hint_hough,
53
- }
54
- }
55
-
56
 
57
  class EndpointHandler():
58
  def __init__(self, path=""):
59
- # define default controlnet id and load controlnet
60
- self.control_type = "normal"
61
- self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- # Load StableDiffusionControlNetPipeline
64
- self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
65
- self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
66
- controlnet=self.controlnet,
67
- torch_dtype=dtype,
68
- safety_checker=None).to(device)
69
- # Define Generator with seed
70
- self.generator = torch.Generator(device="cpu").manual_seed(3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
  def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
73
  """
74
  :param data: A dictionary contains `inputs` and optional `image` field.
75
  :return: A dictionary with `image` field contains image in base64.
76
  """
77
- prompt = data.pop("inputs", None)
78
  image = data.pop("image", None)
79
- controlnet_type = data.pop("controlnet_type", None)
80
-
81
- # Check if neither prompt nor image is provided
82
- if prompt is None and image is None:
83
- return {"error": "Please provide a prompt and base64 encoded image."}
84
-
85
- # Check if a new controlnet is provided
86
- if controlnet_type is not None and controlnet_type != self.control_type:
87
- print(f"changing controlnet from {self.control_type} to {controlnet_type} using {CONTROLNET_MAPPING[controlnet_type]['model_id']} model")
88
- self.control_type = controlnet_type
89
- self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],
90
- torch_dtype=dtype).to(device)
91
- self.pipe.controlnet = self.controlnet
92
-
93
-
94
- # hyperparamters
95
- num_inference_steps = data.pop("num_inference_steps", 30)
96
- guidance_scale = data.pop("guidance_scale", 7.5)
97
- negative_prompt = data.pop("negative_prompt", None)
98
- height = data.pop("height", None)
99
- width = data.pop("width", None)
100
- controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0)
101
-
102
- # process image
103
- image = self.decode_base64_image(image)
104
- control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)
105
 
106
- # run inference pipeline
107
- out = self.pipe(
108
- prompt=prompt,
109
- negative_prompt=negative_prompt,
110
- image=control_image,
111
- num_inference_steps=num_inference_steps,
112
- guidance_scale=guidance_scale,
113
- num_images_per_prompt=1,
114
- height=height,
115
- width=width,
116
- controlnet_conditioning_scale=controlnet_conditioning_scale,
117
- generator=self.generator
 
 
 
118
  )
 
119
 
120
-
121
- # return first generate PIL image
122
- return out.images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
  # helper to decode input image
125
  def decode_base64_image(self, image_string):
 
2
  import base64
3
  from PIL import Image
4
  from io import BytesIO
 
 
 
 
5
  import numpy as np
6
+ import os
7
+ import requests
8
+ import torch
9
+ import torchvision.transforms as T
10
+ from transformers import AutoProcessor, AutoModelForVision2Seq
11
  import cv2
12
+ import ast
13
 
14
  # set device
15
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 
18
  # set mixed precision dtype
19
  dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  class EndpointHandler():
23
  def __init__(self, path=""):
24
+ self.ckpt_id = "ydshieh/kosmos-2-patch14-224"
25
+
26
+ self.model = AutoModelForVision2Seq.from_pretrained(ckpt_id, trust_remote_code=True).to("cuda")
27
+ self.processor = AutoProcessor.from_pretrained(ckpt, trust_remote_code=True)
28
+
29
+ def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1):
30
+ """_summary_
31
+ Args:
32
+ image (_type_): image or image path
33
+ collect_entity_location (_type_): _description_
34
+ """
35
+ if isinstance(image, Image.Image):
36
+ image_h = image.height
37
+ image_w = image.width
38
+ image = np.array(image)[:, :, [2, 1, 0]]
39
+ elif isinstance(image, str):
40
+ if os.path.exists(image):
41
+ pil_img = Image.open(image).convert("RGB")
42
+ image = np.array(pil_img)[:, :, [2, 1, 0]]
43
+ image_h = pil_img.height
44
+ image_w = pil_img.width
45
+ else:
46
+ raise ValueError(f"invaild image path, {image}")
47
+ elif isinstance(image, torch.Tensor):
48
+ # pdb.set_trace()
49
+ image_tensor = image.cpu()
50
+ reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
51
+ reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
52
+ image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
53
+ pil_img = T.ToPILImage()(image_tensor)
54
+ image_h = pil_img.height
55
+ image_w = pil_img.width
56
+ image = np.array(pil_img)[:, :, [2, 1, 0]]
57
+ else:
58
+ raise ValueError(f"invaild image format, {type(image)} for {image}")
59
+
60
+ if len(entities) == 0:
61
+ return image
62
+
63
+ indices = list(range(len(entities)))
64
+ if entity_index >= 0:
65
+ indices = [entity_index]
66
+
67
+ # Not to show too many bboxes
68
+ entities = entities[:len(color_map)]
69
 
70
+ new_image = image.copy()
71
+ previous_bboxes = []
72
+ # size of text
73
+ text_size = 1
74
+ # thickness of text
75
+ text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
76
+ box_line = 3
77
+ (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
78
+ base_height = int(text_height * 0.675)
79
+ text_offset_original = text_height - base_height
80
+ text_spaces = 3
81
+
82
+ # num_bboxes = sum(len(x[-1]) for x in entities)
83
+ used_colors = colors # random.sample(colors, k=num_bboxes)
84
+
85
+ color_id = -1
86
+ for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
87
+ color_id += 1
88
+ if entity_idx not in indices:
89
+ continue
90
+ for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
91
+ # if start is None and bbox_id > 0:
92
+ # color_id += 1
93
+ orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
94
+
95
+ # draw bbox
96
+ # random color
97
+ color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist())
98
+ new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
99
+
100
+ l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
101
+
102
+ x1 = orig_x1 - l_o
103
+ y1 = orig_y1 - l_o
104
+
105
+ if y1 < text_height + text_offset_original + 2 * text_spaces:
106
+ y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
107
+ x1 = orig_x1 + r_o
108
+
109
+ # add text background
110
+ (text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
111
+ text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
112
+
113
+ for prev_bbox in previous_bboxes:
114
+ while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
115
+ text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
116
+ text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
117
+ y1 += (text_height + text_offset_original + 2 * text_spaces)
118
+
119
+ if text_bg_y2 >= image_h:
120
+ text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
121
+ text_bg_y2 = image_h
122
+ y1 = image_h
123
+ break
124
+
125
+ alpha = 0.5
126
+ for i in range(text_bg_y1, text_bg_y2):
127
+ for j in range(text_bg_x1, text_bg_x2):
128
+ if i < image_h and j < image_w:
129
+ if j < text_bg_x1 + 1.35 * c_width:
130
+ # original color
131
+ bg_color = color
132
+ else:
133
+ # white
134
+ bg_color = [255, 255, 255]
135
+ new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
136
+
137
+ cv2.putText(
138
+ new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
139
+ )
140
+ # previous_locations.append((x1, y1))
141
+ previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
142
+
143
+ pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
144
+ if save_path:
145
+ pil_image.save(save_path)
146
+ if show:
147
+ pil_image.show()
148
+
149
+ return pil_image
150
+
151
 
152
  def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
153
  """
154
  :param data: A dictionary contains `inputs` and optional `image` field.
155
  :return: A dictionary with `image` field contains image in base64.
156
  """
 
157
  image = data.pop("image", None)
158
+ image_input = self.decode_base64_image(image)
159
+
160
+ # Save the image and load it again to match the original Kosmos-2 demo.
161
+ # (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
162
+ user_image_path = "/tmp/user_input_test_image.jpg"
163
+ image_input.save(user_image_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
+ # This might give different results from the original argument `image_input`
166
+ image_input = Image.open(user_image_path)
167
+ text_input = "<grounding>Describe this image in detail:"
168
+ #text_input = f"<grounding>{text_input}"
169
+
170
+ inputs = processor(text=text_input, images=image_input, return_tensors="pt")
171
+
172
+ generated_ids = self.model.generate(
173
+ pixel_values=inputs["pixel_values"].to("cuda"),
174
+ input_ids=inputs["input_ids"][:, :-1].to("cuda"),
175
+ attention_mask=inputs["attention_mask"][:, :-1].to("cuda"),
176
+ img_features=None,
177
+ img_attn_mask=inputs["img_attn_mask"][:, :-1].to("cuda"),
178
+ use_cache=True,
179
+ max_new_tokens=128,
180
  )
181
+ generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
182
 
183
+ # By default, the generated text is cleanup and the entities are extracted.
184
+ processed_text, entities = processor.post_process_generation(generated_text)
185
+
186
+ annotated_image = self.draw_entity_boxes_on_image(image_input, entities, show=False)
187
+
188
+ color_id = -1
189
+ entity_info = []
190
+ filtered_entities = []
191
+ for entity in entities:
192
+ entity_name, (start, end), bboxes = entity
193
+ if start == end:
194
+ # skip bounding bbox without a `phrase` associated
195
+ continue
196
+ color_id += 1
197
+ # for bbox_id, _ in enumerate(bboxes):
198
+ # if start is None and bbox_id > 0:
199
+ # color_id += 1
200
+ entity_info.append(((start, end), color_id))
201
+ filtered_entities.append(entity)
202
+
203
+ colored_text = []
204
+ prev_start = 0
205
+ end = 0
206
+ for idx, ((start, end), color_id) in enumerate(entity_info):
207
+ if start > prev_start:
208
+ colored_text.append((processed_text[prev_start:start], None))
209
+ colored_text.append((processed_text[start:end], f"{color_id}"))
210
+ prev_start = end
211
+
212
+ if end < len(processed_text):
213
+ colored_text.append((processed_text[end:len(processed_text)], None))
214
+
215
+ return annotated_image, colored_text, str(filtered_entities)
216
 
217
  # helper to decode input image
218
  def decode_base64_image(self, image_string):