Update README.md
Browse files
README.md
CHANGED
@@ -9,26 +9,19 @@ inference: false
|
|
9 |
|
10 |
## 更新信息
|
11 |
|
12 |
-
**[2024/03/25]** 发布XVERSE-65B-Chat-GPTQ-Int4量化模型,支持vLLM推理xverse-65b量化模型。
|
13 |
-
|
14 |
-
**[2023/
|
15 |
-
**[2023/11/
|
16 |
-
|
17 |
-
**[2023/11/24]** 更新预训练数据的相关信息。
|
18 |
-
|
19 |
-
**[2023/11/06]** 发布 65B 尺寸的 XVERSE-65B 底座模型。
|
20 |
|
21 |
## Update Information
|
22 |
|
23 |
-
**[2024/03/25] ** Release the XVERSE-65B-Chat-GPTQ-Int4 quantification model, supporting vLLM inference for the xverse-65b quantification model.
|
24 |
-
|
25 |
-
**[2023/
|
26 |
-
|
27 |
-
**[2023/11/
|
28 |
-
|
29 |
-
**[2023/11/24]** Update the related information of the pre-training data.
|
30 |
-
|
31 |
-
**[2023/11/06]** Released the XVERSE-65B base model.
|
32 |
|
33 |
## 模型介绍
|
34 |
|
@@ -98,7 +91,7 @@ for output in outputs:
|
|
98 |
|
99 |
## Usage
|
100 |
|
101 |
-
We demonstrated how to use 'vllm' to run the XVERSE-65B-Chat
|
102 |
|
103 |
```python
|
104 |
from vllm import LLM, SamplingParams
|
|
|
9 |
|
10 |
## 更新信息
|
11 |
|
12 |
+
- **[2024/03/25]** 发布XVERSE-65B-Chat-GPTQ-Int4量化模型,支持vLLM推理xverse-65b量化模型。
|
13 |
+
- **[2023/12/08]** 发布 **XVERSE-65B-2** 底座模型,该模型在前一版本的基础上进行了 **Continual Pre-Training**,训练总 token 量达到 **3.2** 万亿;模型各方面的能力均得到提升,尤其是数学和代码能力,在 GSM8K 上提升 **20**%,HumanEval 上提升 **41**%。
|
14 |
+
- **[2023/11/29]** 更新模型架构及更多底座数据的相关信息。
|
15 |
+
- **[2023/11/24]** 更新预训练数据的相关信息。
|
16 |
+
- **[2023/11/06]** 发布 65B 尺寸的 XVERSE-65B 底座模型。
|
|
|
|
|
|
|
17 |
|
18 |
## Update Information
|
19 |
|
20 |
+
- **[2024/03/25] ** Release the XVERSE-65B-Chat-GPTQ-Int4 quantification model, supporting vLLM inference for the xverse-65b quantification model.
|
21 |
+
- **[2023/12/08]** Released the **XVERSE-65B-2** base model. This model builds upon its predecessor through **Continual Pre-Training**, reaching a total training volume of **3.2** trillion tokens. It exhibits enhancements in all capabilities, particularly in mathematics and coding skills, with a **20%** improvement on the GSM8K benchmark and a **41%** increase on HumanEval.
|
22 |
+
- **[2023/11/29]** Update model architecture and additional pre-training data information.
|
23 |
+
- **[2023/11/24]** Update the related information of the pre-training data.
|
24 |
+
- **[2023/11/06]** Released the XVERSE-65B base model.
|
|
|
|
|
|
|
|
|
25 |
|
26 |
## 模型介绍
|
27 |
|
|
|
91 |
|
92 |
## Usage
|
93 |
|
94 |
+
We demonstrated how to use 'vllm' to run the XVERSE-65B-Chat-GPTQ-Int4 quantization model:
|
95 |
|
96 |
```python
|
97 |
from vllm import LLM, SamplingParams
|