--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: robeczech_lr3e-05_bs16_train287 results: [] --- # robeczech_lr3e-05_bs16_train287 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1179 - Precision: 0.9454 - Recall: 0.9595 - F1: 0.9524 - Accuracy: 0.9714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 18 | 1.1550 | 1.0 | 0.0005 | 0.0010 | 0.5668 | | No log | 2.0 | 36 | 0.4725 | 0.7099 | 0.7006 | 0.7052 | 0.8587 | | No log | 3.0 | 54 | 0.2293 | 0.8740 | 0.8643 | 0.8691 | 0.9351 | | No log | 4.0 | 72 | 0.1474 | 0.9224 | 0.9126 | 0.9175 | 0.9565 | | No log | 5.0 | 90 | 0.1210 | 0.9457 | 0.9411 | 0.9434 | 0.9697 | | No log | 6.0 | 108 | 0.1212 | 0.9409 | 0.9382 | 0.9396 | 0.9674 | | No log | 7.0 | 126 | 0.1067 | 0.9540 | 0.9517 | 0.9529 | 0.9740 | | No log | 8.0 | 144 | 0.0918 | 0.9574 | 0.9551 | 0.9562 | 0.9753 | | No log | 9.0 | 162 | 0.1076 | 0.9549 | 0.9517 | 0.9533 | 0.9749 | | No log | 10.0 | 180 | 0.0990 | 0.9599 | 0.9585 | 0.9592 | 0.9774 | | No log | 11.0 | 198 | 0.1027 | 0.9673 | 0.9570 | 0.9621 | 0.9778 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1