Update README.md
Browse files
README.md
CHANGED
@@ -57,4 +57,125 @@ prompt: fruit, food, no humans, food focus, cherry, simple background, english t
|
|
57 |

|
58 |
|
59 |
prompt: 1girl, solo, ball, swimsuit, bikini, mole, beachball, white bikini, breasts, hairclip, navel, looking at viewer, hair ornament, chromatic aberration, holding, holding ball, pool, cleavage, water, collarbone, mole on breast, blush, bangs, parted lips, bare shoulders, mole on thigh, bare arms, smile, large breasts, blonde hair, halterneck, hair between eyes, stomach
|
60 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |

|
58 |
|
59 |
prompt: 1girl, solo, ball, swimsuit, bikini, mole, beachball, white bikini, breasts, hairclip, navel, looking at viewer, hair ornament, chromatic aberration, holding, holding ball, pool, cleavage, water, collarbone, mole on breast, blush, bangs, parted lips, bare shoulders, mole on thigh, bare arms, smile, large breasts, blonde hair, halterneck, hair between eyes, stomach
|
60 |
+

|
61 |
+
|
62 |
+
|
63 |
+
## How to Get Started with the Model
|
64 |
+
|
65 |
+
Use the code below to get started with the model.
|
66 |
+
|
67 |
+
```python
|
68 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
69 |
+
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
70 |
+
from PIL import Image
|
71 |
+
import torch
|
72 |
+
import numpy as np
|
73 |
+
import cv2
|
74 |
+
|
75 |
+
def HWC3(x):
|
76 |
+
assert x.dtype == np.uint8
|
77 |
+
if x.ndim == 2:
|
78 |
+
x = x[:, :, None]
|
79 |
+
assert x.ndim == 3
|
80 |
+
H, W, C = x.shape
|
81 |
+
assert C == 1 or C == 3 or C == 4
|
82 |
+
if C == 3:
|
83 |
+
return x
|
84 |
+
if C == 1:
|
85 |
+
return np.concatenate([x, x, x], axis=2)
|
86 |
+
if C == 4:
|
87 |
+
color = x[:, :, 0:3].astype(np.float32)
|
88 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
89 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
90 |
+
y = y.clip(0, 255).astype(np.uint8)
|
91 |
+
return y
|
92 |
+
|
93 |
+
def nms(x, t, s):
|
94 |
+
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
95 |
+
|
96 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
97 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
98 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
99 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
100 |
+
|
101 |
+
y = np.zeros_like(x)
|
102 |
+
|
103 |
+
for f in [f1, f2, f3, f4]:
|
104 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
105 |
+
|
106 |
+
z = np.zeros_like(y, dtype=np.uint8)
|
107 |
+
z[y > t] = 255
|
108 |
+
return z
|
109 |
+
|
110 |
+
|
111 |
+
controlnet_conditioning_scale = 1.0
|
112 |
+
prompt = "your prompt, the longer the better, you can describe it as detail as possible"
|
113 |
+
negative_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
114 |
+
|
115 |
+
|
116 |
+
eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("gsdf/CounterfeitXL", subfolder="scheduler")
|
117 |
+
|
118 |
+
|
119 |
+
controlnet = ControlNetModel.from_pretrained(
|
120 |
+
"xinsir/anime-painter",
|
121 |
+
torch_dtype=torch.float16
|
122 |
+
)
|
123 |
+
|
124 |
+
# when test with other base model, you need to change the vae also.
|
125 |
+
vae = AutoencoderKL.from_pretrained("gsdf/CounterfeitXL", subfolder="vae", torch_dtype=torch.float16)
|
126 |
+
|
127 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
128 |
+
"gsdf/CounterfeitXL",
|
129 |
+
controlnet=controlnet,
|
130 |
+
vae=vae,
|
131 |
+
safety_checker=None,
|
132 |
+
torch_dtype=torch.float16,
|
133 |
+
scheduler=eulera_scheduler,
|
134 |
+
)
|
135 |
+
|
136 |
+
# you can use either hed to generate a fake scribble given an image or a sketch image totally draw by yourself
|
137 |
+
|
138 |
+
if random.random() > 0.5:
|
139 |
+
# Method 1
|
140 |
+
# if you use hed, you should provide an image, the image can be real or anime, you extract its hed lines and use it as the scribbles
|
141 |
+
# The detail about hed detect you can refer to https://github.com/lllyasviel/ControlNet/blob/main/gradio_fake_scribble2image.py
|
142 |
+
# I provide a pseudo-code here
|
143 |
+
# img = cv2.imread(img_path)
|
144 |
+
# hed_img = apply_hed(img)
|
145 |
+
# cv2.imwrite("a hed detect path for an image", hed_img)
|
146 |
+
|
147 |
+
controlnet_img = Image.open("a hed detect path for an image")
|
148 |
+
controlnet_img = np.array(controlnet_img)
|
149 |
+
controlnet_img = nms(controlnet_img, 127, 3)
|
150 |
+
controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
|
151 |
+
|
152 |
+
# different threshold for different lines
|
153 |
+
random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
|
154 |
+
controlnet_img[controlnet_img > random_val] = 255
|
155 |
+
controlnet_img[controlnet_img < 255] = 0
|
156 |
+
controlnet_img = Image.fromarray(controlnet_img)
|
157 |
+
|
158 |
+
else:
|
159 |
+
# Method 2
|
160 |
+
# if you use a sketch image total draw by yourself
|
161 |
+
control_path = "the sketch image you draw with some tools, like drawing board, the path you save it"
|
162 |
+
controlnet_img = Image.open(control_path) # Note that the image must be black-white(0 or 255), like the examples we list
|
163 |
+
|
164 |
+
# must resize to 1024*1024 or same resolution bucket to get the best performance
|
165 |
+
width, height = controlnet_img.size
|
166 |
+
ratio = np.sqrt(1024. * 1024. / (width * height))
|
167 |
+
new_width, new_height = int(width * ratio), int(height * ratio)
|
168 |
+
controlnet_img = controlnet_img.resize((new_width, new_height))
|
169 |
+
|
170 |
+
images = pipe(
|
171 |
+
prompt,
|
172 |
+
negative_prompt=negative_prompt,
|
173 |
+
image=controlnet_img,
|
174 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
175 |
+
width=new_width,
|
176 |
+
height=new_height,
|
177 |
+
num_inference_steps=30,
|
178 |
+
).images
|
179 |
+
|
180 |
+
images[0].save(f"your image save path, png format is usually better than jpg or webp in terms of image quality but got much bigger")
|
181 |
+
```
|