File size: 1,481 Bytes
1b41227 85b8a22 1b41227 85b8a22 8845331 16d778d 85b8a22 16d778d e68ac51 16d778d 85b8a22 2082a7f 77cd137 aac5bb3 77cd137 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: apache-2.0
datasets:
- PygmalionAI/PIPPA
- Norquinal/claude_multiround_chat_30k
- ehartford/dolphin
- cais/mmlu
- OpenLeecher/Teatime
- BAAI/COIG-PC
- natural_questions
---
# RWKV 14B one state model
finetuend on instruction datasets ,can do Role play, for openllm leaderboard, impoved mmlu training datasets
this is a huggingface formatted model
checkpoint can be founded here https://huggingface.co/xiaol/Model_zoo/blob/main/rwkv-raven-14B-v4-one-state.pth
and need to use new vocabs file https://huggingface.co/xiaol/Model_zoo/blob/main/20B_tokenizer_new_inference.json
```
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
#model_id = "xiaol/Huggingface-RWKV-claude-for-mobile-v4-world-1.5B-16k"
model_id = "xiaol/RWKV-raven-14B-one-state"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
#model = model.half() #1.5B need fp32
#model = torch.compile(model) #need pytorch 2.0 and linux
model.to(0)
tokenizer = AutoTokenizer.from_pretrained(model_id)
question = "Tell me about ravens"
prompt = f"### Instruction: {question}\n### Response:"
inputs = tokenizer(prompt, return_tensors="pt").to(0)
output = model.generate(inputs["input_ids"], max_new_tokens=100)
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
```
### Traning details
https://wandb.ai/one-/out14B-one/runs/uhomhbgg/workspace
### Test case
https://rwkv.ai-creator.net/st
https://rwkv-next-web.ai-creator.net/ |