--- library_name: transformers license: mit base_model: xaviergillard/xlm-roberta-large-vieille-france tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: xlm-roberta-large-vieille-france-v2 results: [] --- # xlm-roberta-large-vieille-france-v2 This model is a fine-tuned version of [xaviergillard/xlm-roberta-large-vieille-france](https://huggingface.co/xaviergillard/xlm-roberta-large-vieille-france) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0724 - Precision: 0.7526 - Recall: 0.8044 - F1: 0.7776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 54 | 0.0555 | 0.6035 | 0.6928 | 0.6451 | | No log | 2.0 | 108 | 0.0457 | 0.7216 | 0.7963 | 0.7571 | | No log | 3.0 | 162 | 0.0480 | 0.7147 | 0.8060 | 0.7576 | | No log | 4.0 | 216 | 0.0462 | 0.7173 | 0.8100 | 0.7608 | | No log | 5.0 | 270 | 0.0494 | 0.7536 | 0.8036 | 0.7778 | | No log | 6.0 | 324 | 0.0580 | 0.7619 | 0.8044 | 0.7825 | | No log | 7.0 | 378 | 0.0538 | 0.7487 | 0.7971 | 0.7721 | | No log | 8.0 | 432 | 0.0597 | 0.7520 | 0.8165 | 0.7829 | | No log | 9.0 | 486 | 0.0638 | 0.7345 | 0.8052 | 0.7682 | | 0.0888 | 10.0 | 540 | 0.0658 | 0.7579 | 0.8173 | 0.7865 | | 0.0888 | 11.0 | 594 | 0.0636 | 0.7506 | 0.8100 | 0.7792 | | 0.0888 | 12.0 | 648 | 0.0685 | 0.7496 | 0.8011 | 0.7745 | | 0.0888 | 13.0 | 702 | 0.0695 | 0.7507 | 0.8133 | 0.7808 | | 0.0888 | 14.0 | 756 | 0.0715 | 0.7511 | 0.8076 | 0.7783 | | 0.0888 | 15.0 | 810 | 0.0724 | 0.7526 | 0.8044 | 0.7776 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.1.2 - Datasets 3.3.0 - Tokenizers 0.21.0