wjbmattingly commited on
Commit
bd0e32e
·
verified ·
1 Parent(s): 9e60487

Create yolo2xml.py

Browse files
Files changed (1) hide show
  1. yolo2xml.py +346 -0
yolo2xml.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List
2
+ import os
3
+ import sys
4
+ import glob
5
+ import argparse
6
+ import datetime
7
+ import shutil
8
+ import numpy as np
9
+ import cv2
10
+ from PIL import Image
11
+ from ultralytics import YOLO
12
+ from huggingface_hub import hf_hub_download
13
+
14
+ # XML generation imports
15
+ import xml.etree.ElementTree as ET
16
+ from xml.dom import minidom
17
+
18
+ # Define models
19
+ MODEL_OPTIONS = {
20
+ "YOLOv11-Nano": "yolov11n-seg.pt",
21
+ "YOLOv11-Small": "yolov11s-seg.pt",
22
+ "YOLOv11-Medium": "yolov11m-seg.pt",
23
+ "YOLOv11-Large": "yolov11l-seg.pt",
24
+ "YOLOv11-XLarge": "yolov11x-seg.pt"
25
+ }
26
+
27
+ # Dictionary to store loaded models
28
+ models: Dict[str, YOLO] = {}
29
+
30
+ # Load specified model or default to Nano
31
+ def load_model(model_name: str = "YOLOv11-Nano") -> YOLO:
32
+ if model_name not in models:
33
+ model_file = MODEL_OPTIONS[model_name]
34
+ model_path = hf_hub_download(
35
+ repo_id="wjbmattingly/kraken-yiddish",
36
+ filename=model_file
37
+ )
38
+ models[model_name] = YOLO(model_path)
39
+ return models[model_name]
40
+
41
+ def process_image(
42
+ image_path: str,
43
+ model_name: str = "YOLOv11-Medium",
44
+ conf_threshold: float = 0.25,
45
+ iou_threshold: float = 0.45
46
+ ) -> tuple:
47
+ """Process an image and return detection results and annotated image"""
48
+
49
+ # Read the image
50
+ image = cv2.imread(image_path)
51
+ if image is None:
52
+ raise ValueError(f"Cannot read image: {image_path}")
53
+
54
+ # Convert BGR to RGB for YOLO
55
+ image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
56
+
57
+ # Get image dimensions
58
+ height, width = image.shape[:2]
59
+
60
+ # Get the selected model
61
+ model = load_model(model_name)
62
+
63
+ # Perform inference with YOLO
64
+ results = model(
65
+ image_rgb,
66
+ conf=conf_threshold,
67
+ iou=iou_threshold,
68
+ verbose=False,
69
+ device='cpu'
70
+ )
71
+
72
+ # Get the first result
73
+ result = results[0]
74
+
75
+ # Create annotated image for visualization
76
+ annotated_image = result.plot(
77
+ conf=True,
78
+ line_width=None,
79
+ font_size=None,
80
+ boxes=True,
81
+ masks=True,
82
+ probs=True,
83
+ labels=True
84
+ )
85
+
86
+ # Convert back to BGR for saving with OpenCV
87
+ annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_RGB2BGR)
88
+
89
+ return result, annotated_image, width, height
90
+
91
+ def create_page_xml(
92
+ image_filename: str,
93
+ result,
94
+ width: int,
95
+ height: int
96
+ ) -> str:
97
+ """Create PAGE XML structure from YOLO results"""
98
+
99
+ # Create the root element
100
+ root = ET.Element("PcGts", {
101
+ "xmlns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15",
102
+ "xmlns:xsi": "http://www.w3.org/2001/XMLSchema-instance",
103
+ "xsi:schemaLocation": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15 http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15/pagecontent.xsd"
104
+ })
105
+
106
+ # Add metadata
107
+ metadata = ET.SubElement(root, "Metadata")
108
+ ET.SubElement(metadata, "Creator").text = "escriptorium"
109
+
110
+ # Use a future date like in the example
111
+ future_date = (datetime.datetime.now() + datetime.timedelta(days=365)).isoformat()
112
+ ET.SubElement(metadata, "Created").text = future_date
113
+ ET.SubElement(metadata, "LastChange").text = future_date
114
+
115
+ # Add page element with original image filename
116
+ page = ET.SubElement(root, "Page", {
117
+ "imageFilename": os.path.basename(image_filename),
118
+ "imageWidth": str(width),
119
+ "imageHeight": str(height)
120
+ })
121
+
122
+ # Process each detected mask/contour as a separate TextRegion
123
+ has_valid_masks = False
124
+
125
+ if hasattr(result, 'masks') and result.masks is not None:
126
+ masks = result.masks.xy
127
+
128
+ # Create main text region for the right side (assuming right-to-left Hebrew/Yiddish text)
129
+ # Use a unique timestamp for the ID
130
+ timestamp = int(datetime.datetime.now().timestamp())
131
+ main_region_id = f"eSc_textblock_TextRegion_{timestamp}"
132
+
133
+ # Get bounding box of all masks to determine the text region
134
+ all_points_x = []
135
+ all_points_y = []
136
+ valid_masks = []
137
+
138
+ # First pass: filter all masks and collect valid points
139
+ for mask_points in masks:
140
+ # Filter out NaN values from mask points
141
+ valid_points = [(p[0], p[1]) for p in mask_points if not (np.isnan(p[0]) or np.isnan(p[1]))]
142
+
143
+ if valid_points and len(valid_points) >= 3: # Only proceed if we have enough valid points
144
+ valid_masks.append(valid_points)
145
+ all_points_x.extend([p[0] for p in valid_points])
146
+ all_points_y.extend([p[1] for p in valid_points])
147
+ has_valid_masks = True
148
+
149
+ # Calculate the text region coordinates if we have valid points
150
+ if has_valid_masks and all_points_x and all_points_y:
151
+ min_x = max(0, int(min(all_points_x)))
152
+ max_x = min(width, int(max(all_points_x)))
153
+ min_y = max(0, int(min(all_points_y)))
154
+ max_y = min(height, int(max(all_points_y)))
155
+
156
+ # Create main text region with calculated bounds
157
+ main_text_region = ET.SubElement(page, "TextRegion", {
158
+ "id": main_region_id,
159
+ "custom": "structure {type:text_zone;}"
160
+ })
161
+
162
+ # Add coordinates for the text region (use rectangle format)
163
+ region_points = f"{min_x},{min_y} {max_x},{min_y} {max_x},{max_y} {min_x},{max_y}"
164
+ ET.SubElement(main_text_region, "Coords", {"points": region_points})
165
+
166
+ # Process each valid mask
167
+ for i, valid_points in enumerate(valid_masks):
168
+ # Create text line with auto-incrementing ID
169
+ line_id = f"eSc_line_r2l{i+1}" if i > 0 else "eSc_line_line_1610719743362_3154"
170
+ text_line = ET.SubElement(main_text_region, "TextLine", {
171
+ "id": line_id,
172
+ "custom": "structure {type:text_line;}"
173
+ })
174
+
175
+ # Format mask points for PAGE XML format
176
+ # Convert to int to avoid scientific notation
177
+ points_str = " ".join([f"{int(p[0])},{int(p[1])}" for p in valid_points])
178
+
179
+ # Add coordinates to the text line
180
+ line_coords = ET.SubElement(text_line, "Coords", {
181
+ "points": points_str
182
+ })
183
+
184
+ # Calculate baseline points spanning the entire width of the polygon
185
+ # Sort points by x-value to find the left and right boundaries
186
+ points_by_x = sorted(valid_points, key=lambda p: p[0])
187
+ leftmost_point = points_by_x[0]
188
+ rightmost_point = points_by_x[-1]
189
+
190
+ # Sort points by y-value (ascending) to find the bottom area of the line
191
+ sorted_by_y = sorted(valid_points, key=lambda p: p[1])
192
+
193
+ # Take points in the bottom third, but ensure we have at least one point
194
+ bottom_third_index = max(0, int(len(sorted_by_y) * 0.67))
195
+ bottom_points = sorted_by_y[bottom_third_index:]
196
+
197
+ if not bottom_points: # Fallback if no bottom points
198
+ bottom_points = sorted_by_y # Use all points
199
+
200
+ # Find the average y-value of bottom points for a straight baseline
201
+ avg_y = sum(p[1] for p in bottom_points) / len(bottom_points)
202
+
203
+ # Create baseline with two points spanning the full width
204
+ left_x = leftmost_point[0]
205
+ right_x = rightmost_point[0]
206
+
207
+ # Create baseline string with exactly two points
208
+ baseline_str = f"{int(left_x)},{int(avg_y)} {int(right_x)},{int(avg_y)}"
209
+
210
+ # Add baseline
211
+ baseline = ET.SubElement(text_line, "Baseline", {
212
+ "points": baseline_str
213
+ })
214
+
215
+ # Add empty text equivalent
216
+ text_equiv = ET.SubElement(text_line, "TextEquiv")
217
+ ET.SubElement(text_equiv, "Unicode")
218
+
219
+ # Create a second text region for the left side
220
+ # This is to mimic the structure in the example but with empty content
221
+ left_region = ET.SubElement(page, "TextRegion", {
222
+ "id": f"eSc_textblock_r1",
223
+ "custom": "structure {type:text_zone;}"
224
+ })
225
+
226
+ # Left region takes up the left side of the page
227
+ left_region_points = f"0,0 {min_x-10},{min_y} {min_x-10},{max_y} 0,{max_y}"
228
+ ET.SubElement(left_region, "Coords", {"points": left_region_points})
229
+
230
+ # If no valid masks were found, create a default text region covering the whole page
231
+ if not has_valid_masks:
232
+ print("Warning: No valid masks detected. Creating a default text region.")
233
+ default_region = ET.SubElement(page, "TextRegion", {
234
+ "id": f"eSc_textblock_default_{int(datetime.datetime.now().timestamp())}",
235
+ "custom": "structure {type:text_zone;}"
236
+ })
237
+ default_points = f"0,0 {width},0 {width},{height} 0,{height}"
238
+ ET.SubElement(default_region, "Coords", {"points": default_points})
239
+
240
+ # Convert to string with pretty formatting
241
+ xmlstr = minidom.parseString(ET.tostring(root)).toprettyxml(indent=" ")
242
+
243
+ return xmlstr
244
+
245
+ def save_results(image_path: str, annotated_image: np.ndarray, xml_content: str):
246
+ """Save the original image to output/ and XML file to annotations/ directory"""
247
+
248
+ # Create output and annotations directories if they don't exist
249
+ output_dir = "output"
250
+ annotations_dir = "annotations"
251
+ os.makedirs(output_dir, exist_ok=True)
252
+ os.makedirs(annotations_dir, exist_ok=True)
253
+
254
+ # Get the base filename without extension
255
+ base_name = os.path.basename(image_path)
256
+ file_name_no_ext = os.path.splitext(base_name)[0]
257
+
258
+ # Copy the original image to output directory
259
+ output_image_path = os.path.join(output_dir, f"{file_name_no_ext}.jpg")
260
+ # Use shutil.copy to directly copy the file instead of reading/writing
261
+ shutil.copy(image_path, output_image_path)
262
+
263
+ # Save the XML file to annotations directory
264
+ output_xml_path = os.path.join(annotations_dir, f"{file_name_no_ext}.xml")
265
+ with open(output_xml_path, "w", encoding="utf-8") as f:
266
+ f.write(xml_content)
267
+
268
+ print(f"Results saved to:")
269
+ print(f" Image: {output_image_path}")
270
+ print(f" XML: {output_xml_path}")
271
+
272
+ def main():
273
+ parser = argparse.ArgumentParser(description="Convert YOLO segmentation to PAGE XML format")
274
+ parser.add_argument("image_path", help="Path to the input image or directory of images")
275
+ parser.add_argument("--model", default="YOLOv11-Medium", choices=MODEL_OPTIONS.keys(),
276
+ help="Model to use for detection")
277
+ parser.add_argument("--conf", type=float, default=0.25,
278
+ help="Confidence threshold for detection")
279
+ parser.add_argument("--iou", type=float, default=0.45,
280
+ help="IoU threshold for detection")
281
+ parser.add_argument("--batch", action="store_true",
282
+ help="Process all images in the directory if image_path is a directory")
283
+
284
+ args = parser.parse_args()
285
+
286
+ # Check if the path is a directory and batch mode is enabled
287
+ if os.path.isdir(args.image_path) and args.batch:
288
+ # Get all image files in the directory
289
+ image_files = []
290
+ for extension in ['.jpg', '.jpeg', '.png', '.tif', '.tiff']:
291
+ image_files.extend(glob.glob(os.path.join(args.image_path, f"*{extension}")))
292
+ image_files.extend(glob.glob(os.path.join(args.image_path, f"*{extension.upper()}")))
293
+
294
+ if not image_files:
295
+ print(f"No image files found in directory: {args.image_path}")
296
+ sys.exit(1)
297
+
298
+ print(f"Found {len(image_files)} images to process")
299
+
300
+ # Process each image
301
+ for i, image_path in enumerate(image_files):
302
+ print(f"Processing {i+1}/{len(image_files)}: {os.path.basename(image_path)}")
303
+ try:
304
+ # Process the image
305
+ result, annotated_image, width, height = process_image(
306
+ image_path,
307
+ args.model,
308
+ args.conf,
309
+ args.iou
310
+ )
311
+
312
+ # Create PAGE XML
313
+ xml_content = create_page_xml(image_path, result, width, height)
314
+
315
+ # Save results
316
+ save_results(image_path, annotated_image, xml_content)
317
+
318
+ except Exception as e:
319
+ print(f"Error processing {image_path}: {e}")
320
+ import traceback
321
+ traceback.print_exc()
322
+ else:
323
+ # Process a single image
324
+ try:
325
+ # Process the image
326
+ result, annotated_image, width, height = process_image(
327
+ args.image_path,
328
+ args.model,
329
+ args.conf,
330
+ args.iou
331
+ )
332
+
333
+ # Create PAGE XML
334
+ xml_content = create_page_xml(args.image_path, result, width, height)
335
+
336
+ # Save results
337
+ save_results(args.image_path, annotated_image, xml_content)
338
+
339
+ except Exception as e:
340
+ print(f"Error: {e}")
341
+ import traceback
342
+ traceback.print_exc()
343
+ sys.exit(1)
344
+
345
+ if __name__ == "__main__":
346
+ main()