--- library_name: peft license: other base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16 tags: - generated_from_trainer datasets: - mlabonne/FineTome-100k model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0` ```yaml base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16 model_type: Llama4ForConditionalGeneration # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name strict: false # torch_compile: true plugins: - axolotl.integrations.liger.LigerPlugin liger_glu_activation: true liger_rms_norm: true liger_layer_norm: true llama4_linearized_experts: true load_in_4bit: true adapter: qlora lora_r: 32 lora_alpha: 64 lora_target_modules: - self_attn.q_proj - self_attn.k_proj - self_attn.v_proj - self_attn.o_proj - shared_expert.gate_proj - shared_expert.up_proj - shared_expert.down_proj # - experts.gate_projs.[0-9]+$ # - experts.up_projs.[0-9]+$ # - experts.down_projs.[0-9]+$ lora_modules_to_save: # - lm_head # - embed_tokens chat_template: llama4 datasets: - path: mlabonne/FineTome-100k type: chat_template split: train[:20%] field_messages: conversations message_property_mappings: role: from content: value dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/out sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 3 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 1e-4 bf16: true tf32: true logging_steps: 1 flash_attention: true warmup_steps: 10 evals_per_epoch: 1 saves_per_epoch: 1 weight_decay: 0.0 fsdp: - auto_wrap - full_shard fsdp_config: fsdp_transformer_layer_cls_to_wrap: Llama4TextDecoderLayer fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD fsdp_activation_checkpointing: true special_tokens: pad_token: <|finetune_right_pad_id|> eos_token: <|eot|> ```

# outputs/out This model is a fine-tuned version of [axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16](https://huggingface.co/axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16) on the mlabonne/FineTome-100k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 ### Training results ### Framework versions - PEFT 0.15.1 - Transformers 4.51.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1