
1

Large Wireless Model (LWM):
A Foundation Model for Wireless Channels

Sadjad Alikhani, Gouranga Charan and Ahmed Alkhateeb

Abstract—This paper presents Large Wireless Model (LWM)—
the world’s first foundation model for wireless channels. De-
signed as a task-agnostic model, LWM generates universal, rich,
contextualized channel embeddings (features) that potentially
enhance performance across a wide range of downstream tasks
in wireless communication and sensing systems. Towards this
objective, LWM, which has a transformer-based architecture, was
pre-trained in a self-supervised manner on large-scale wireless
channel datasets. Our results show consistent improvements in
downstream tasks when using the LWM embeddings compared
to raw channel representations, especially in scenarios with high-
complexity machine learning tasks and limited training datasets.
This LWM’s ability to learn from large-scale wireless data opens
a promising direction for intelligent systems that can efficiently
adapt to diverse tasks with limited data, paving the way for
addressing key challenges in wireless communication and sensing
systems.

Index Terms—Channel embedding, large wireless model, self-
supervised learning, transformer

I. INTRODUCTION

Current and future wireless communication and sensing
systems feature important trends that promise substantial per-
formance gains [3], [4]. For example, these systems are rapidly
relying on the use of large antenna arrays, the operation
over high frequency bands in mid-band, millimeter wave
(mmWave), and sub-terahertz, the support of massive number
of communicating and sensing devices of various quality
of service requirements, and the densification of network
infrastructure nodes. Further, these wireless communication
and sensing systems increasingly interact with each other, from
coordination and integration to assisting each other. Achieving
the high potential of these new trends, however, requires
overcoming critical challenges in high-dimensional signal
processing, complex optimization problems, massive wireless
overhead requirements, and intricate network management
among others. All that motivates the development of novel
approaches for the modeling, optimizing, and operation of
next-generation wireless communication and sensing systems.

Traditional modeling techniques, such as statistical models
and optimization-based approaches, struggle to address these
challenges effectively. These methods often rely on simpli-
fied models or scenario-specific features, failing to generalize
across the diverse and dynamic environments of future wireless
communication and sensing networks. For instance, they may
not capture complex interference patterns in dense small-
cell networks or scale poorly to high-dimensional MIMO

The authors are with the School of ECEE, Arizona State University. Email:
{alikhani,gcharan,alkhateeb}@asu.edu. Part of this work has been accepted
at the IEEE ICMLCN, 2025 [1].

systems. Deep learning has emerged as a promising alternative,
offering data-driven (model-based or model-free) solutions
for optimizing network performance, resource allocation, and
signal processing [5]–[9]. However, deep learning approaches
also face significant limitations. First, they typically require
large labeled datasets, which are often scarce in wireless
networks and are typically expensive and hard to collect. Sec-
ond, traditional deep learning models like convolutional neu-
ral networks (CNNs) and recurrent neural networks (RNNs)
struggle with specific aspects of wireless communication and
sensing tasks. CNNs may not capture temporal dependencies
efficiently [10], [11], while RNNs often struggle with long-
term dependencies and real-time computational efficiency [2],
[12]. These limitations underscore the need for a more robust
and adaptable framework for leveraging and deploying deep
learning in wireless communication and sensing networks.

To address these challenges, we propose Large Wireless
Model (LWM), a foundation model specifically designed for
wireless communication and sensing channels. LWM intro-
duces a task-agnostic framework with pre-training on large-
scale synthetic data. As a task-agnostic model, LWM serves
as a universal feature extractor for multiple downstream
tasks, facilitating complex problem-solving with limited
labeled data. It leverages transformer models with multi-
head attention mechanisms to capture complex spatial and
temporal relationships in wireless channel data. Inspired by
advancements in natural language processing (NLP) [2], [13]–
[16], audio processing [17]–[19], and computer vision [20]–
[22], LWM learns rich, context-aware embeddings that can
be utilized for various downstream wireless tasks, such as
channel estimation, beamforming, and interference manage-
ment. LWM is pre-trained on extensive wireless channel
datasets, covering a wide range of wireless scenarios. This
approach enables the model to capture fundamental properties
of wireless propagation and network dynamics, which can be
transferred to real-world scenarios, even with limited task-
specific data. Through these innovations, LWM addresses
the key challenges of limited labeled data, complex spatial-
temporal dependencies, and the need for generalization across
diverse wireless environments. The key contributions can be
summarized as follows:

• We introduce the world’s first foundation model for wire-
less channel embeddings, capable of extracting universal,
rich, and context-aware features from complex wireless
channels and in diverse environments.

• We demonstrate the LWM’s effectiveness across multiple
downstream tasks, showcasing its ability to generalize to

ar
X

iv
:2

41
1.

08
87

2v
2

 [
cs

.I
T

]
 7

 A
pr

 2
02

5

2

LWM (Transformer Encoder)

CLS P/2 P/2 + 1 P/2 + 2 P/2 + 3 P

Patch Embedding

Positional

Encoding

1 2 3

... ...

Real Part

Imaginary Part

Masked Channel Modeling

Patch

Generation

LWM CLS Embedding

LWM Channel Embedding

LWM Pre-training

Minimize MSE Loss

Downstream Task

Downstream

Model

Linear Layer

Wireless Channel

LWM

Architecture

Input

Multi-head

Attention

Add & Norm

Feed-

forward

Add & Norm

E

Figure 1: This figure depicts the offline pre-training and online embedding generation process for LWM. The channel is divided into fixed-size patches, which
are linearly embedded and combined with positional encodings before being passed through a Transformer encoder. During self-supervised pre-training, some
embeddings are masked, and LWM leverages self-attention to extract deep features, allowing the decoder to reconstruct the masked values. For downstream
tasks, the generated LWM embeddings enhance performance. The right block shows the LWM architecture, inspired by [2].

various wireless scenarios with limited task-specific data.
• We provide a comprehensive analysis of the LWM’s

performance compared to conventional approaches that
use raw wireless channels, highlighting its advantages in
feature extraction and generalization.

This work introduces a new framework for leveraging
and deploying deep learning in wireless communication and
sensing systems by leveraging the power of foundation models
to address key modeling, design, and deployment challenges
in wireless systems. The pre-trained LWM model, scripts,
datasets, demo, and instructions are available on the Wireless
Intelligence Lab’s Hugging Face page 1, allowing researchers
to incorporate them into their projects.

II. PRIOR WORK

Foundation models have transformed artificial intelligence
by introducing a paradigm of large-scale pre-training followed
by task-specific fine-tuning [14]–[20]. These models, exem-
plified by Bidirectional Encoder Representations from Trans-
formers (BERT) [13] in NLP and Wav2Vec 2.0 [17] in audio
processing, leverage transformer architectures with multi-head
attention mechanisms to capture complex relationships in data.
The pre-training phase typically involves massive datasets and
novel learning objectives: BERT uses self-supervised methods,
namely masked language modeling and next-sentence predic-
tion, while Wav2Vec 2.0 employs contrastive learning and
masked prediction tasks for audio understanding. This process
allows the models to learn rich, contextual representations
of their input domains. The key to their success lies in the
attention mechanism, which enables dynamic focus on relevant
parts of the input, and the scale of pre-training, which allows
the model to capture a wide range of patterns and relationships.
The resulting pre-trained model serves as a powerful feature
extractor, capable of being fine-tuned on various downstream
tasks with limited task-specific data. This transfer learning

1Available on Hugging Face: https://huggingface.co/wi-lab

capability, combined with the model’s ability to capture long-
range dependencies and generalize across scenarios, has led
to state-of-the-art performance across numerous applications.

Unlike traditional models, which process sequences sequen-
tially (like RNNs [23]) or in a restricted local context (like
CNNs [24]), Transformers look at all parts of a sequence
simultaneously. This parallel processing allows each element
to relate to every other element, capturing dependencies across
the entire input sequence. For example, in a sentence, words
like ”bank” and ”river” might appear far apart, but self-
attention lets the model understand their association when
the context implies a natural setting, rather than financial.
By calculating attention scores between each pair of words,
Transformers allow each word to dynamically ”attend” to
others, helping the model to understand nuanced meanings
and relationships.

In language models like BERT, each word token in a
sentence is converted into a dense vector representation (em-
bedding) and is associated with a query, key, and value. The
attention mechanism then calculates a weighted average of
these values for each word, where the weights are derived
from the similarity between the queries and keys. This process
allows the model to focus on important words and phrases
depending on context. For instance, in the sentence, “The
animal didn’t cross the street because it was too tired,” the
model can determine that “it” refers to “the animal” rather
than “the street.” This disambiguation is achieved because self-
attention scores between “it” and “the animal” would be higher
than between “it” and “the street.”

Another example can be seen in GPT models [16], where the
attention mechanism not only understands contextual nuances
but also generates coherent text. Given a prompt, the model
iteratively predicts the next word by attending to all previous
words, ensuring that each generated word maintains context.
For instance, when prompted with “Once upon a time in a
small village,” GPT can generate a follow-up that maintains
the narrative theme by giving more weight to probable story
elements over unrelated concepts. This process enables the

https://huggingface.co/wi-lab

3

model to construct coherent, contextually relevant text, show-
casing the power of the self-attention mechanism to understand
complex dependencies and generate highly fluent and context-
aware language output.

Moreover, in vision models, Transformers leverage the same
self-attention mechanism to capture spatial relationships across
pixels or image patches, providing a powerful alternative to
convolutional neural networks (CNNs). For example, in Vision
Transformers (ViTs) [20], an image is divided into small,
fixed-size patches, each of which is flattened and linearly
embedded, similar to tokens in a sentence. These embeddings
are then processed in parallel, allowing the Transformer to
learn relationships between distant regions of an image. This
capability is particularly useful for tasks requiring an under-
standing of global context, such as recognizing objects within
complex backgrounds or interpreting spatial patterns across
an entire scene. For instance, in a complex scene containing
a forest with animals partially obscured by trees, CNNs [24]
might struggle to understand the spatial relationship between
scattered animal parts due to their limited receptive fields.
However, a ViT can relate these distant regions by directly
computing attention scores between patches, allowing it to
“see” the entire animal even if parts of it are distant in
pixel space. This method enables ViTs to recognize high-
level patterns and achieve state-of-the-art performance in tasks
like object detection, image segmentation, and visual question
answering, where a global understanding of the image context
is essential.

The success of foundation models in other domains presents
compelling opportunities for wireless communications and
sensing, particularly in addressing challenges related to com-
plex spatial-temporal dependencies and limited labeled data.
However, adapting this paradigm to wireless systems requires
overcoming several hurdles. Unlike text or images, wireless
signals have unique characteristics such as complex-valued
data, rapid temporal variations, and domain-specific noise
patterns. The lack of large-scale, diverse datasets in wireless
communications comparable to those in NLP or computer
vision poses another challenge. Despite these obstacles, a
foundation model for wireless communications and sensing
could potentially provide a universal feature extractor for
several tasks. By pre-training on extensive datasets (either
synthetic datasets generated through advanced ray-tracing
simulations or real-world data), such a model could capture
fundamental properties of wireless propagation and network
dynamics. This approach could enable robust performance
across diverse wireless environments, even with limited task-
specific data, addressing key challenges in the field and
potentially revolutionizing the field.

III. LWM

Building upon the foundation model paradigm discussed
in Section II, LWM applies these principles to the domain
of wireless communications (and sensing). LWM is designed
as a task-agnostic model for generalized feature extraction in
wireless channels, addressing the unique challenges of this
field. LWM adopts a self-supervised Transformer architecture

with multi-head attention mechanisms and is pre-trained on
a large dataset of wireless channels. LWM processes input
channels in patches, enabling it to serve as a universal feature
extractor for various wireless communication and sensing
tasks. This approach allows LWM to capture complex patterns
and provide rich, contextual representations of wireless envi-
ronments, potentially improving performance across diverse
scenarios even with limited task-specific data.

LWM is built upon several core design principles:
Patch-Based Processing: Wireless channels are segmented

into patches, enabling LWM to capture both local and global
patterns efficiently. This patch-based structure allows for
spatial and spectral dependencies to be encoded in a way
that mimics human perception of relevant wireless features,
enhancing LWM’s utility as a universal feature extractor.

Self-Supervised Pre-Training: Unlike traditional super-
vised models that require labeled data for each task, LWM
is trained on a large dataset of unlabeled wireless chan-
nels using self-supervised techniques. By leveraging masked
channel modeling and an attention mechanism, LWM learns
to capture complex structural relationships within the data
without relying on labeled datasets.

Multi-Head Attention: The attention mechanism in LWM
allows it to selectively focus on relevant patterns in wireless
channels, dynamically assigning importance to different parts
of the input. This is particularly beneficial for wireless ap-
plications, where meaningful features can vary spatially and
spectrally across environments.

Task Flexibility and Transferability: The representations
produced by LWM are highly versatile, making it possible to
apply the model to numerous downstream tasks with minimal
or no fine-tuning. As a result, LWM can generalize across
different scenarios and geographic regions, achieving robust
performance even when task-specific data is sparse or highly
variable.

In the following sections, we detail each component of
LWM’s pipeline, from data preprocessing and embedding to
the architecture of the Transformer encoder blocks. These sec-
tions will demonstrate how LWM processes raw wireless chan-
nels into enriched feature representations and embeddings, as
illustrated in Fig. 1, and provide insight into how this model
bridges the gap between traditional wireless communication
techniques and advanced, general-purpose AI architectures.

IV. DATA PREPROCESSING: MASKING AND EMBEDDING

Given the input wireless channels, we first preprocess them
to align with the Transformer input format and facilitate our
self-supervised pre-training method. The steps for this are
outlined below.

A. Patch Generation

Unlike RNNs [23], Transformers require the entire input
simultaneously. To achieve this, we feed each channel in a
patch-based format [20]. Each channel matrix H ∈ CM×N is
split into P patches by first separating the real and imaginary
components, flattening them, and then dividing each part into
patches. The process is as follows:

4

1) Separate Real and Imaginary Components: We start
by separating H into its real and imaginary components

Hreal = ℜ(H), (1a)
Himag = ℑ(H), (1b)

where Hreal,Himag ∈ RM×N .
2) Flatten Each Component: Flatten both Hreal and Himag

into vectors using the vectorization operator, as follows

hreal = vec
(
H⊤

real

)
, (2a)

himag = vec
(
H⊤

imag

)
, (2b)

resulting in hreal,himag ∈ RMN .
3) Divide into Patches: Divide each flattened component

into P/2 patches. Let each patch have a length L =
2MN/P . We generate patches as follows

pi = hreal[(i− 1)L+ 1 : iL], i ∈ [P/2], (3a)
pi+P/2 = himag[(i− 1)L+ 1 : iL], i ∈ [P/2], (3b)

where each patch pi ∈ RL, with i ∈ [P] = {1, 2, . . . , P}.
This patch-based approach accelerates computations, en-

ables the model to learn both inter- and intra-patch relation-
ships, mimics convolutional layers with self-attention, and
increases design flexibility. For instance, with M = 32,
N = 32, P = 128, and L = 16, this configuration
generates 128 patches of length 16. Smaller patches capture
fine-grained details but require higher computational cost due
to the increased number of patches, and they may limit
the model’s ability to learn broader structural dependencies
[25]. Larger patches emphasize long-range dependencies and
structural patterns, reducing computational requirements but
potentially overlooking finer details. Ultimately, selecting the
optimal patch size depends on the task’s need for local versus
global information and the available computational resources,
rather than any specific threshold.

For LWM, which is designed to serve as a universal feature
extractor, achieving this balance is essential. By selecting
a patch size that allows both detail and structure to be
preserved, LWM remains adaptable, capturing features that
are sufficiently detailed to represent nuanced variations while
broad enough to generalize across tasks and datasets. A useful
approach for assessing an optimal patch size is to evaluate the
performance of the masking strategy described next.

B. Masked Channel Modeling

For LWM to be task-agnostic, we pre-train it in a self-
supervised manner. Self-supervised learning enables LWM to
capture the intrinsic structure of the data, allowing it to serve as
a universal feature extractor adaptable to various downstream
tasks, without reliance on labeled data. To enable this self-
supervised pre-training, we propose a technique called Masked
Channel Modeling (MCM).

In MCM, we mask p% of the real part patches. This
percentage is chosen to balance the model’s access to context
with the challenge of reconstructing missing patches. Masking
too many patches could lead to excessive information loss,
making reconstruction difficult, while masking too few would

provide limited incentive for the model to learn complex
dependencies. Within the selected p% of patches, specific sub-
percentages are assigned:

• 80% are fully masked with a uniform vector m =
[m,m, . . . ,m]⊤ ∈ RL, preventing the model from ac-
cessing information in those locations. This requires
LWM to leverage surrounding patches to predict the
masked values, pushing it to learn the spatial dependen-
cies within the channel.

• 10% are replaced with random vectors sampled from
a distribution (e.g., N (0, σ2)), adding noise and encour-
aging LWM to differentiate genuine channel structures
from anomalies.

• 10% are left unchanged, providing partial ground truth
to stabilize the model’s predictions and helping it recog-
nize real patterns among masked and altered patches.

This masking strategy is carefully applied to both the real
and imaginary parts to prevent information leakage between
them. Specifically, the imaginary patches selected for masking
are the exact counterparts of the randomly selected real
patches. This ensures that if a real part patch is masked, the
corresponding imaginary part patch is also masked, preventing
any indirect inference. If only the real part of a patch pi were
masked while leaving its imaginary part pi+P/2 unmasked, the
model could leverage the unmasked imaginary patch pi+P/2

to predict pi. By masking both components of each selected
patch, LWM learns each component’s structure independently,
resulting in robust feature extraction and reducing the chance
of unintended data leakage.

The selected p% of patches are masked before going
through the input embedding, positional encoding, and fi-
nally the LWM pre-training stages. The corresponding high-
dimensional embeddings of masked patches at the output of
LWM then pass through a simple linear layer that maps each
embedding back to the original patch size. The goal is to
minimize the Mean Squared Error (MSE) between the recon-
structed masked patches and their original values, expressed
as

LMCM =
1

|M|
∑
i∈M

∥∥WdeceLWM
i − pi

∥∥2 , (4)

where M represents the set of all selected (masked) patches,
eLWM
i ∈ RD is the high-dimensional embedding of the i-th

masked patch at LWM’s output, Wdec ∈ RL×D is the weight
matrix of the linear layer used to map ei back to the original
patch size, and pi is the original value of the i-th patch.

This approach allows LWM to develop highly refined em-
beddings that can be decoded accurately using a simple linear
layer, underscoring the richness and expressiveness of the
learned representations. Because the Transformer encoder does
not know which patches will be masked or replaced by random
patches, it is forced to maintain a contextual representation
for every input patch, ensuring the embeddings are robust
and contextually aware. Additionally, as random replacement
only occurs for a small fraction of all patches (10% of the
p% masked patches), the model’s ability to capture spatial
and structural dependencies remains unaffected [13]. The high

5

performance of these linear layers in reconstructing masked
patches highlights the quality of LWM’s output embeddings,
which effectively capture complex spatial relationships within
the channel, enabling efficient decoding and ensuring robust
performance across a variety of downstream tasks.

C. CLS Patch

We prepend an additional patch, known as the CLS (classifi-
cation) patch [13], to the sequence of channel patches, increas-
ing the sequence length to P +1. The CLS patch is initialized
as a learnable vector, denoted pCLS = [c, c, . . . , c]⊤ ∈ RL,
where c is set as a random value. Through its interactions
across the Transformer layers, it aggregates and summarizes
information from all other patches in the sequence.

This interaction enables the CLS patch to capture a com-
prehensive view of the entire input by attending to each
patch in each layer, accumulating information from both local
details and broader structures. As the sequence passes through
multiple Transformer layers, the CLS patch’s representation is
refined, with each layer integrating lower-level details (e.g.,
spatial or temporal variations) and higher-level features (e.g.,
overall channel quality or dominant paths). The resulting
representation, eLWM

CLS , serves as a compact, high-level summary
of the input sequence

eLWM
CLS = fLWM(eCLS, {ei}Pi=1), (5)

where fLWM represents the transformations and interactions
within LWM. Through this mechanism, the CLS patch iden-
tifies the patches that contribute most significantly to the
structure and dependencies within the channel, highlighting
the segments most critical in defining the channel’s overall
characteristics.

Additionally, the compact size of the CLS patch makes it
an efficient, low-dimensional encoded representation of the
channels. This compactness is advantageous, as it serves as an
expressive summary without requiring further model training,
given that LWM has already been pre-trained in a task-agnostic
manner to capture these global features.

The attention scores assigned between the CLS patch and
each patch pi reveal the relative importance of each patch,
making the CLS patch a valuable interpretability tool across
various wireless tasks. For example, in channel estimation,
the CLS patch can highlight critical segments of the chan-
nel, such as those representing major multipath components,
essential for accurate channel estimation. In classification
tasks such as line-of-sight (LoS) and non-line-of-sight (NLoS)
classification, the CLS patch effectively summarizes the input,
capturing the distinguishing features needed to identify LoS
versus NLoS conditions. By attending to patches with high
relevance to signal paths, reflection, and scattering, the CLS
patch representation eLWM

CLS captures a robust global context that
is ideal for classification tasks, where understanding the overall
channel state is crucial. Additionally, in resource allocation,
the CLS patch’s attention scores {αCLS,i}Pi=1 (where αCLS,i
is the attention weight of the i-th patch with respect to the
CLS patch) help identify channel segments that demand more
resources. This optimization supports spectrum and power

allocation by prioritizing the most influential patches. In
beamforming and beam selection, the CLS patch can focus
on patches that carry directional cues, assisting in adaptive
beam selection by highlighting segments most indicative of
optimal beam configurations. In semantic communications,
the CLS patch enables efficient encoding by capturing patches
containing the most contextually relevant information, enhanc-
ing communication quality while reducing redundancy. These
examples demonstrate the versatility of the CLS patch across
wireless applications, where it serves as an adaptable focal
point for understanding and prioritizing channel features that
directly impact performance [26].

D. Input Embedding

After masking and prepending the CLS patch to the channel
patch sequence, each patch is projected into an embedding
space with dimension D using a linear layer, effectively
mapping each flattened patch to a D-dimensional vector. Given
a set of patches {pCLS,p

m
1 ,p

m
2 , . . . ,p

m
P }, where pm

i ∈ RL

represents a masked patch (with only 15% of patches masked),
the linear layer performs the following transformation for each
patch pm

i

eemb
i = Wembpm

i + b ∈ RD, i ∈ {CLS} ∪ [P], (6)

where Wemb ∈ RD×L is the weight matrix, and b ∈
RD is the bias vector for all patches. This transfor-
mation produces the initial patch embeddings Eemb =
[eemb

CLS, e
emb
1 , eemb

2 , . . . , eemb
P]⊤ ∈ R(P+1)×D, allowing the

Transformer to process all patches in a common high-
dimensional feature space where relationships can be effec-
tively captured.

Embedding patches into a higher-dimensional space before
feeding them into the Transformer is essential for capturing
complex relationships, especially compared to models like
autoencoders, which often reduce dimensionality. A higher-
dimensional embedding provides a richer, more expressive
feature space, enabling each patch to retain fine-grained in-
formation about the channel data. Directly using the original
patch size as an embedding would limit the model’s capacity
to capture meaningful relationships. The choice of a higher
embedding dimension D enables the Transformer to establish
detailed contextual relationships, similar to how embeddings
in text-based models capture the semantic relationships be-
tween words. In language models, embeddings allow each
token (word or subword) to represent not only its isolated
meaning but its meaning contextualized by surrounding words.
This context-awareness is essential for handling nuances like
polysemy.

Likewise, in wireless channels, high-dimensional embed-
dings allow each patch to capture its information with re-
spect to the entire channel, representing dependencies between
different parts of the channel and capturing structural nu-
ances. In wireless channels, fine-grained details such as spatial
correlations, multipath effects, and scattering are crucial for
accurate representation. By embedding patches into a higher
dimension, we ensure sufficient capacity to capture these
intricate dependencies. Lower-dimensional representations, as

6

in autoencoders, often sacrifice such details for compression,
which can limit the Transformer’s capacity to understand the
channel’s complex structure.

Furthermore, positional encodings are added to these em-
beddings to provide the Transformer with information about
the order of patches, as it inherently lacks sequence aware-
ness. To achieve this, we define a positional encoding patch
ppos
i ∈ RL for each patch i as follows:
• For the CLS token, the positional encoding patch is a

uniform vector of zeros.
• For each subsequent patch i ∈ [P], the positional en-

coding patch is a uniform vector filled with the value i,
providing an incremental encoding. Mathematically, this
is expressed as

ppos
i = i · 1L, i ∈ [P], (7)

where 1L is a vector of ones in RL.
Each positional encoding patch ppos

i is then mapped into the
embedding space using a learned embedding matrix Wpos ∈
RD×L and a bias vector bpos ∈ RD, resulting in positional
encodings

eposi = Wposppos
i + bpos, i ∈ {CLS} ∪ [P]. (8)

These position embeddings are then added to the correspond-
ing patch embeddings ei, yielding the position-encoded input
embeddings

einputi = eemb
i + eposi , i ∈ {CLS} ∪ [P]. (9)

This addition forms the final set of position-encoded embed-
dings Einput = [einputCLS , einput1 , einput2 , . . . , einputP]⊤ ∈ R(P+1)×D,
effectively incorporating ordered context into each patch em-
bedding for the Transformer model.

V. MODEL ARCHITECTURE

We adopt the Transformer encoder architecture from [2],
with modifications tailored to the context of wireless channels.
The model processes input embeddings through a sequence
of E encoder blocks, progressively refining the embeddings
to capture increasingly complex relationships and contextual
patterns in the data. Across the n-th encoder block, where
n ∈ [E], the input embeddings Einput

n ∈ R(P+1)×D evolve,
with each layer enhancing feature richness. This sequence
culminates in the final output embeddings, denoted as ELWM ∈
R(P+1)×D, which constitute the LWM embeddings, encapsu-
lating a refined representation suitable for downstream tasks.

Within each encoder block, the input embeddings go
through the following components sequentially: multi-head
attention, layer normalization with residual connections,
a feed-forward network, and another layer normalization
with residual connections. Each component refines the em-
beddings by capturing different aspects of the data structure.
The output from one encoder block serves as the input to
the next block, enabling the model to progressively build
complex representations that capture the dependencies within
the wireless channels. The details of these model components
at each encoder block are outlined below.

A. Self-Attention Mechanism

The self-attention mechanism allows each patch in the
input sequence to assign contextually weighted importance to
all other patches, achieved through a dot-product similarity
measure. Given input embeddings Einput ∈ R(P+1)×D, where
P is the number of patches and D is the embedding dimension,
each row of Einput represents an embedding vector correspond-
ing to a patch.

To compute self-attention, we first derive the Query (Q),
Key (K), and Value (V) matrices using linear transformations,
each defined by learned weights

Q = EinputWQ, K = EinputWK , V = EinputWV ,
(10)

where WQ,WK ,WV ∈ RD×D′
. Here, D′ is typically set to

D for single-head attention but may vary to DH for multi-head
attention, as will be discussed next.

The core of self-attention begins by calculating the scaled
dot-product of the query (Q) and key (K) matrices, capturing
the similarity among patches in the input sequence. This
similarity measure is computed as follows

S =
QK⊤
√
D′

, (11)

where S represents the scaled similarity scores, and the
scaling factor

√
D′ prevents gradient issues like explosion or

vanishing. These scaled similarity scores are then normalized
by applying the softmax function

A = softmax(S), (12)

where A is the attention weight matrix, which ensures that
the weights assigned to each patch sum to 1 for each query,
allowing the model to focus selectively on the most relevant
patches. Finally, the attention weights are used to compute a
weighted sum of the value (V) matrix, producing the attention
output

Attention(Q,K,V) = AV. (13)

This process enables the model to dynamically adjust its
focus based on the contextual relevance of each patch in
relation to others, effectively capturing both local and global
relationships across the input sequence.

The Query, Key, and Value matrices in the self-attention
mechanism represent distinct, interrelated aspects of each input
patch, working together to capture both local and global
dependencies in the data. Each of these matrices has a specific
purpose, ultimately contributing to how the model emphasizes
certain relationships over others within the input sequence.

Query (Q): The Query matrix encodes the intent or inter-
est of each patch in the sequence, representing the way each
patch seeks information relevant to itself from other patches.
Queries help determine what aspects of the surrounding data
are most pertinent to the current patch, as each query vector
in Q essentially acts as a question that asks how similar or
relevant other patches are to it.

Key (K): The Key matrix complements the Query matrix by
encoding characteristics of each patch that can be evaluated

7

by queries from other patches. While Queries seek informa-
tion, Keys provide the attributes or features by which each
patch can be ”queried.” For any two patches, their query and
key vectors are compared to assess their mutual relevance,
which is captured through the dot product QK⊤. High simi-
larity scores indicate that certain patches carry information of
high interest to one another.

Value (V): The Value matrix represents the actual informa-
tion that each patch provides to the model, contributing to the
weighted sum in the final self-attention calculation. Once the
model identifies relevant patches (through the similarity scores
from the dot product of Queries and Keys), the corresponding
Value vectors are aggregated based on their importance, de-
fined by the computed attention weights. Thus, Values are akin
to the content that is passed along in the attention mechanism,
shaping the contextualized representation of each patch by
integrating relevant details from others.

To better understand the roles of Query, Key, and Value,
consider the analogy of a conference setting. Imagine each
participant has specific interests or questions (Queries) they
want addressed, such as AI techniques or wireless advance-
ments. Each participant also has unique expertise (Keys) they
can offer. If someone’s interest in AI aligns with another’s data
science expertise, a strong match occurs, enabling an exchange
of knowledge (Values). In self-attention, this relationship is
formalized by computing the similarity between each Query
and all Keys. When a Query and Key pair strongly align, a
higher attention weight is assigned, resulting in a weighted ag-
gregation of the corresponding Value vectors. This effectively
allows each patch to gather information most relevant to its
context.

Together, Queries, Keys, and Values facilitate a process
where each patch determines which other patches to attend to,
assigns importance to each based on their contextual relevance,
and then updates its representation based on a weighted
sum of the relevant information. This arrangement allows
the Transformer model to dynamically focus on relationships
across patches, enabling it to capture both immediate and
extended dependencies in the data with great flexibility and
precision.

B. Multi-Head Attention

Multi-head attention builds upon self-attention by enabling
the model to learn multiple representations simultaneously,
as depicted in Fig. 2. Instead of a single attention head, H
independent self-attention mechanisms are applied, each with
distinct learned weight matrices

headh = Attention(EinputWQ
h ,E

inputWK
h ,EinputWV

h), (14)

where WQ
h ,W

K
h ,WV

h ∈ RD×DH are the transformation
matrices specific to each head, and DH = ⌊D/H⌋. By pro-
cessing across multiple heads, the model learns representations
from various subspaces of the data, enhancing its ability to
capture nuanced relationships. The outputs of all heads are
concatenated and passed through a linear transformation

MultiHead(Q,K,V) = Concat(head1, . . . , headH)WO,
(15)

Scaled

Dot-Product

Scaled

Dot-Product

Softmax

Softmax

..
. ..
.

..
.

..
.

..
.

C
o

n
c

a
te

n
a

ti
o

n

..
.

..
.

..
. .

.
.

.
.
.

Attention

Heads

... ..
.

..
.

Attention Scores

Figure 2: Multi-head Attention Mechanism

where WO ∈ RDHH×D. This combined output from multiple
heads enables the model to focus on diverse aspects of the
input sequence simultaneously, enriching the feature repre-
sentation by capturing different patches and interactions in
parallel.

In other words, each attention head can be thought of as
a unique lens through which the model interprets the input
data. In a multi-faceted problem space, these different lenses
enable the model to pick up on varying levels of detail and
relational structures simultaneously. To extend our analogy of
participants in a conference: imagine that each participant not
only has a set of questions (Queries) and expertise (Keys) but
can also approach the conversation from multiple viewpoints
or specializations (e.g., technical details, future trends, industry
applications). One head might focus on broad concepts (like
general channel structure or coarse spatial relationships), while
another might pick up fine-grained, detailed aspects (such as
precise timing or frequency patterns).

C. Feed-Forward Network (FFN)

Each encoder layer has a feed-forward network (FFN)
that processes individual patch embeddings independently.
Formally, the FFN applies two linear transformations separated
by a non-linear ReLU activation

FFN(ei) = max(0, eiW1 + b1)W2 + b2, (16)

where W1 ∈ RD×DFF and W2 ∈ RDFF×D. The intermediate
layer size DFF = TD expands the embedding dimension
by a factor of T , which empirically improves the model’s
expressiveness. The FFN enriches each embedding with more
complex transformations, and because each embedding is
processed separately, the FFN layer does not introduce de-
pendencies across patches.

D. Layer Normalization and Residual Connections

Layer normalization stabilizes the training by ensuring that
each layer’s output has zero mean and unit variance

LayerNorm(ei) =
ei − µi

σi
, (17)

8

where µi and σi denote the mean and standard deviation
across the feature dimension of each patch embedding e. This
normalization is essential for convergence, especially in deeper
networks, as it reduces covariate shifts.

Residual connections are added around each sub-layer (self-
attention and FFN) to improve gradient flow

Outputi = LayerNorm(ei + sub-layer(ei)). (18)

The addition operation allows gradient information to flow
more directly through the network, mitigating vanishing gra-
dient problems and enabling efficient backpropagation.

VI. PRE-TRAINING

Given the data preprocessing steps and the LWM model
architecture described in the previous two subsections, we pre-
train this model to be then leveraged in multiple downstream
tasks. The following subsections outline the key components
of LWM’s pre-training process.

A. Pre-Training Dataset

The LWM pre-training process utilizes a vast and diverse
dataset of over 1 million wireless channels from 15 scenarios
within the DeepMIMO dataset [27], with 80% of the data
dedicated to training and 20% to validation. These scenar-
ios include O1, Boston5G, ASU Campus, New York, Los
Angeles, Chicago, Houston, Phoenix, Philadelphia, Miami,
Dallas, San Francisco, Austin, Columbus, and Seattle. The first
three scenarios are significantly larger, while the remaining
twelve city scenarios average around 1500 effective users
each. In wireless communications and sensing, relationships
within the data often manifest as dependencies across various
dimensions, requiring the model to capture both local patterns
and broader spatial structures. Transformers are most effective
when trained on large-scale and diverse datasets [20], as these
enable them to generalize and learn complex relationships.
Training on this extensive dataset ensures that LWM captures
nuanced wireless patterns, making it highly capable for a
variety of downstream tasks.

B. Wireless Channel Adaptation for Transformer Architecture

The wireless channels in the adopted dataset are structured
as (M,N) = (32, 32) matrices, where N corresponds to the
number of subcarriers and M to the number of antennas. To
prepare this data for Transformer processing, each channel
matrix H ∈ C32×32 is split into P = 128 patches: 64 from the
real part and 64 from the imaginary part, as detailed in section
(IV). Each patch contains values from L = 16 consecutive
subcarriers out of the 32 total subcarriers, spanning each
antenna, resulting in patches of size 16× 1.

For self-supervised learning, our proposed Masked Channel
Modeling (MCM) technique is applied as described in section
(IV). Specifically, 9 out of 64 real-part patches are randomly
masked (approximately 15% of patches), with the correspond-
ing imaginary-part patches masked similarly to prevent data
leakage. Masking is conducted based on three probability-
based actions: with probability 0.1, patches are replaced with a

random vector; with probability 0.8, they are replaced with a
uniform MASK array (value m = 1); and with probability
0.1, they remain unchanged. This approach enables LWM
to learn robust contextual relationships across both masked
and unmasked patches, facilitating effective feature extraction
from wireless channels. Importantly, because LWM does not
know which patches are masked, it is compelled to understand
all inter- and intra-patch relationships, rather than focusing
solely on the masked patches. Although we only optimize
the loss function based on the masked patches, this structure
ensures that LWM captures a comprehensive representation
across the entire input, reinforcing its ability to generalize
effectively. The objective is to minimize the prediction loss (4)
by selecting LWM embeddings eLWM

i of the selected (masked)
patches M and minimizing

min
Wdec,Θ

∑
i∈M

∥∥WdeceLWM
i − pi

∥∥2 , (19)

where Θ represents the parameters of the LWM model. This
optimization encourages the model to learn mappings that
accurately reconstruct masked patches from the embeddings,
refining its ability to capture critical context from both masked
and unmasked channel sections.

After masking, a CLS patch vector pCLS, initialized with
random values, is prepended to the start of the channel patch
sequence. Each 16 × 1 patch vector is then projected into
a D = 64-dimensional space via a linear layer, yielding
embeddings eemb

i ∈ R64 for each patch. These embeddings are
further enriched with positional encodings to capture structural
dependencies critical for learning within wireless channel
data, as discussed in section (IV). The final input embedding
matrix Einput ∈ R129×64 consolidates spatial and frequency
information from both real and imaginary components, ready
for processing through LWM’s transformer-only encoder.

C. Pre-Training Loss Function

LWM uses MSE loss instead of the cross-entropy loss
commonly found in NLP models like BERT. In language
models, cross-entropy loss is effective for predicting discrete
tokens from a fixed vocabulary, as in Masked Language
Modeling (MLM), where masked tokens are classified based
on surrounding context

LMLM = −
∑
i∈M

log p(yi|eBERTi), (20)

where M represents masked positions, yi is the true token,
and p(yi|eBERTi) is the predicted probability. This approach
works for discrete data but is unsuitable for continuous-valued
wireless channels, which lack a fixed vocabulary. Instead,
LWM treats masked channel modeling (MCM) as a regression
task, using MSE loss (4) to measure the error between
predicted and actual masked patch values. This allows LWM
to learn spatial and temporal dependencies from surrounding
unmasked patches, developing robust feature representations
tailored to the continuous nature of wireless channels.

9

Table I: LWM Pre-training Setup Parameters

Parameter Value
Antennas at BS (N) 32

Antennas at UEs 1
Subcarriers (M) 32
Patch Size (L) 16

Embedding Size (D) 64
Channel Patches (P) 128
Attention Heads (H) 12
Encoder Layers (E) 12

FFN Hidden Size (DFF) 256
Head Dimension (DH) 5
Masking Percentage (p) 15 (80/10/10)

Learning Rate 1× 10−4

Batch Size 64
Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−8

Weight Decay 1× 10−5

Dropout Rate 0.1
Model Parameters 600K
Training Set Size 820K

Validation Set Size 200K

D. Pre-Training Setup Parameters

As shown in table I, the pre-training setup for LWM
includes 12 attention heads, 12 encoder layers, an embedding
size of 64, and an FFN hidden size of 256. Training begins
with a learning rate of 1 × 10−4, decreasing by 10% every
10 epochs to ensure smooth convergence. A batch size of 64
is utilized, along with the Adam optimizer (β1 = 0.9, β2 =
0.999, eps = 1 × 10−8), and a weight decay of 1 × 10−5 to
reduce overfitting. The 12-head attention mechanism enables
the model to capture multiple relationships within the data,
while the depth of the encoder layers allows it to extract both
local and global patterns in the channels. This setup ensures
effective learning, balancing convergence and generalization
across various wireless communication scenarios.

By the end of pre-training, LWM is capable of producing
rich, contextual embeddings from raw wireless channels. The
integration of channel preprocessing, self-supervised learning,
bidirectional attention, and multi-head attention mechanisms
enables the model to generalize effectively across a range of
scenarios, making it a powerful feature extractor for diverse
downstream tasks in wireless communications and sensing
systems.

VII. INFERENCE

LWM excels in generating rich, context-aware embeddings
from raw wireless channels in real-time, with no need for addi-
tional training for embedding generation. Pre-trained on large,
diverse datasets using a self-supervised, Transformer-based
approach, it allows users to immediately obtain high-quality,
low- and high-dimensional embeddings suitable for a wide
array of downstream tasks. The pre-trained model can be em-
ployed as-is, leveraging these embeddings directly, or choose
to fine-tune the model’s last layers to extract highly task-
specific, fine-grained features. This flexibility makes LWM
highly adaptable, enabling it to capture both local and global

patterns and perform effectively across general and specialized
scenarios, even in data-scarce environments.

The inference process begins with segmenting the raw
wireless channel data into patches, embedding them, and
adding positional encodings, similar to the pre-training phase
but without the need for masking or weight updates.
This structured approach allows LWM to extract and rep-
resent multi-scale patterns from both small and large con-
texts within the data. The resulting embeddings, ELWM =

[eLWM
CLS , eLWM

1 , eLWM
2 , . . . , eLWM

P]⊤ =
[
C ET

]T ∈ R(P+1)×D,
consist of the CLS embedding C ∈ RD and the channel
embeddings E ∈ RP×D, as shown in Fig. 1.

The CLS embedding provides a holistic channel repre-
sentation, making it ideal for general tasks like LoS/NLoS
classification, while channel embeddings, four times larger
than the input, capture intricate spatial and frequency de-
pendencies for more detailed applications. This inference
setup offers key advantages, including immediate usability,
as pre-trained embeddings can be directly applied without
retraining, enabling rapid deployment in resource-limited sce-
narios. LWM also captures both local and global channel
patterns, ensuring adaptability to tasks requiring fine-grained
or high-level insights. Additionally, its flexibility allows users
to either apply embeddings as-is or fine-tune the last layers
for task-specific improvements without retraining the full
model. Furthermore, LWM generalizes well even in data-
scarce environments, leveraging its pre-trained representations
to maintain high performance with minimal labeled data.
By balancing detailed feature extraction with computational
efficiency, LWM provides a practical and adaptable solution
for various wireless communication tasks.

VIII. DOWNSTREAM TASK EVALUATION

In this section, we show that LWM CLS and channel
embeddings outperform raw wireless channels across various
downstream tasks. We evaluate LoS/NLoS classification and
sub-6 GHz to mmWave beam prediction as examples, though
many other tasks can be explored.

A. Sub-6 to mmWave Beam Prediction

This task aims to predict the strongest mmWave beam
at the receiver from a predefined codebook at the base
station, based on Sub-6 GHz channels. This is a specific
case of channel mapping, where instead of directly predicting
mmWave channels, the model learns the relationship between
Sub-6 GHz channels and the best mmWave beam. Ground-
truth optimal beams are computed for each user, generating a
labeled dataset. The task complexity is varied by adjusting the
codebook size, ranging from 16 to 256 beams. Performance is
evaluated across different training data percentages to assess
how well the model generalizes with less data. This makes the
task highly practical for modern communication systems, as it
reduces the overhead of full mmWave channel estimation. It
also tests how well LWM embeddings capture the spatial and
propagation characteristics of Sub-6 GHz channels and gener-
alize to higher-frequency mmWave beams, making it an ideal

10

(a) Raw Channels Performance (b) LWM Embeddings Performance

(c) Performance Difference (d) Percentage of Performance Gain

Figure 3: This figure compares beam prediction F1-score performance be-
tween raw channels and their inferred LWM embeddings, based on a total of
10388 training raw channels, and highlights their relative effectiveness.

benchmark for comparing the efficiency and generalizability
of LWM embeddings against raw channels.

Downstream Model: To ensure fair comparison, we use
a similar downstream model complexity for both embed-
dings and raw channels, selecting a model optimized for raw
channels as the performance benchmark. A uniform Residual
1D-CNN architecture with 500K parameters is employed,
designed to capture complex patterns through residual con-
nections and weight-sharing while avoiding overfitting. The
model consists of an initial convolution layer followed by three
residual blocks, each containing several convolution layers that
extract deeper features. This is followed by global average
pooling and fully connected layers for final classification.
When parameters exceed 500K, the model overfits to raw
channels, which is why we consider this architecture the
benchmark for raw channels.

Downstream Task Dataset: The test set comprises six
new scenarios from the DeepMIMO dataset, which were not
part of LWM’s pre-training: Denver, Fort Worth, Oklahoma,
Indianapolis, Santa Clara, and San Diego, comprising a total
of 14840 samples. For each user, the corresponding 28GHz
channels are generated, and the optimal beams are computed
to create a labeled dataset, where 3.5GHz channels serve as
inputs and 28GHz beams as labels. The dataset is split into
70% for training, 20% for validation, and 10% for testing. For
LWM embeddings, the raw channels are first to generate LWM
embeddings, the raw channels are processed through the pre-
trained LWM model in real-time, with the channel embedding
component E serving as the input for this downstream model,
as shown in Fig. 1.

Downstream Tasks Evaluation: Fig. 3 presents a com-
parison of the performance between raw channels and LWM
channel embeddings in training a model for beam prediction,
evaluated across different codebook sizes and varying amounts
of training data. As shown in Fig. 3a, the downstream models
trained with raw channels require significantly more data to
reach high performance levels, while LWM channel embed-
dings usually achieve performance saturation with just 50%-
70% of the available data and consistently outperform raw
channels. Notably, LWM embeddings reach the benchmark
performance of raw channels with only 40%-50% of the data,
regardless of task complexity, highlighting the data efficiency
of LWM embeddings.

We use the F1-score for classification tasks as it accounts
for imbalanced labels and provides a clearer evaluation of
model performance than accuracy. The F1-score difference
heatmap in Fig. 3c highlights where embeddings surpass raw
channels, aiding in model optimization for complex or low-
data tasks. Meanwhile, the F1-score gain percentage heatmap
in Fig. 3d emphasizes the efficiency of embeddings, showing
how they scale with fewer resources. Fig. 3c demonstrates that
embeddings are most effective when data is limited relative to
task complexity. The performance difference follows a concave
trend, where an initial increase in data improves performance,
but beyond a certain point, the difference diminishes and
gradually decreases, though it never turns negative.

As the task complexity increases, such as with a higher
number of labels, larger datasets are required to fully showcase
the advantages of embeddings over raw channels, allowing
embeddings to reveal their full potential in capturing intricate
patterns and dependencies.

B. LoS/NLoS Classification
This task serves as a great benchmark to evaluate CLS

embeddings, which provide a highly compressed but more
informative representation of raw channels. These embeddings
effectively capture the critical features of a channel, making
them ideal for various tasks that require a holistic understand-
ing of the channel’s behavior. For instance, in applications like
CSI feedback, the CLS embeddings can reduce the overhead
of sending full channel data to the base station, particularly
in multi-vendor environments. Instead of relying on infeasi-
ble joint autoencoder training between user equipment (UE)
and base station (BS), the LWM model functions like an
encoder, delivering a compact yet illustrative version of the
channel. This makes it highly suitable for tasks that need a
comprehensive understanding of channel characteristics while
significantly reducing transmission complexity.

Downstream Model: The classification model serves as
the downstream network for raw channels (2048 features),
CLS embeddings (64 features), and channel embeddings (8192
features), maintaining a consistent architecture across different
input representations. It begins with a 512-unit fully connected
layer, followed by batch normalization, ReLU activation, and
dropout (0.1) to enhance stability and prevent overfitting. The
pattern continues through 256 and 128-unit layers, refining the
features hierarchically. The final linear layer maps the pro-
cessed 128-dimensional representation to LoS/NLoS classes.

11

Gain of
�ne-tuning

Gain of inference on
pre-trained LWM

LWM embeddings are most e�ective
in data-limited scenarios

Figure 4: This figure compares F1-scores for LoS/NLoS classification using
models trained on raw wireless channels and LWM embeddings across
different percentages of the 6639 training samples. CLS embeddings are 32×
smaller than raw channels, while channel embeddings are 4× larger. CLS
embeddings inferred from noisy (imperfect) raw channels are also included
to demonstrate LWM’s robustness to noise.

Batch normalization accelerates convergence, while dropout
improves generalization.

Downstream Task Dataset: For this task, we utilized the
densified Denver dataset, where we re-ran ray tracing on the
existing DeepMIMO scenario, reducing the user grid spacing
from 2.5m to 1m. This higher density resulted in a total of
8299 samples, offering a more detailed representation of the
wireless environment for downstream evaluations. The dataset
is partitioned with up to 80% allocated for training (6639
samples) and the remaining 20% for validation.

Downstream Task Evaluation: Fig. 4 underscores LWM’s
capabilities in data efficiency, lightweight adaptation, and
noise robustness. The downstream model is evaluated using
five input types: (i) CLS embeddings (first-patch representa-
tion from frozen pre-trained LWM), (ii) channel embeddings
(remaining patches of general-purpose embeddings), (iii) raw
channels (unprocessed channels), (iv) CLS embeddings in-
ferred from imperfect raw channels corrupted with complex
Gaussian noise (SNR = 5 dB), and (v) fine-tuned CLS
embeddings. Here, general-purpose embeddings are extracted
from the pre-trained LWM without weight updates, while fine-
tuned embeddings are generated by updating only the last
three layers of LWM jointly with the downstream task. This
setup isolates the role of pre-trained feature hierarchies versus
task-adaptive refinement. The comparison across input types
quantifies LWM’s ability to balance noise suppression, data
efficiency, and task-specific discriminability—key strengths
for deployment in resource-constrained wireless environments.

The evaluation reveals several key findings. First, with only
6 training samples, models trained on raw channel data per-
form slightly better than random guessing (average F1-score
= 0.55), whereas general-purpose embeddings improve perfor-
mance by +0.31 F1, demonstrating strong class separation in
the embedding space (Fig. 5). Second, fine-tuned embeddings
enable perfect class differentiation (F1 ≈ 1.0) even with

minimal data, achieved by unfreezing and updating only the
last three layers of LWM alongside the downstream model—a
strategy grounded in empirical evidence that earlier layers en-
code coarse-grained patterns (e.g., syntax and morphology in
LLMs), while deeper layers refine task-specific details (e.g.,
signal variations) [28] (Fig. 6). Third, CLS embeddings out-
perform channel embeddings in low-data regimes, as channel
embeddings capture complex patterns requiring larger datasets
for effective utilization; however, channel embeddings slightly
surpass CLS performance as training samples grow, leveraging
their richer information density. Fourth, CLS embeddings
exhibit robustness to noise, aligning closely with their noisy
counterparts, which highlights the LWM’s ability to filter
noise via self-attention in unseen environments. Finally, the
fine-tuning strategy—limited to deeper layers—preserves pre-
trained knowledge of coarse signal characteristics (e.g., prop-
agation geometry), preventing overfitting on small LoS/NLoS
datasets, while enabling adaptation to subtle discriminative
features. For more complex tasks, such as beam prediction,
full-model fine-tuning becomes necessary.

IX. DISCUSSION AND REMARKS

In this section, we provide additional insights related to the
LWM framework, covering points on attention mechanisms,
masked channel modeling based pre-training, and a compar-
ison with autoencoder embeddings. These discussions offer
complementary perspectives to enhance understanding of the
model’s design and functionality.

A. Discussion on Attention

LWM’s Transformer-based architecture leverages self-
attention to model spatial and spectral dependencies in wire-
less channels, offering significant advantages over conven-
tional signal processing methods. Unlike CNNs, which rely
on local receptive fields, self-attention enables global feature
extraction, capturing critical relationships across frequency
and spatial domains in a single layer. This mechanism dynam-
ically assigns importance scores to different patches, allowing
the model to prioritize dominant channel components while
suppressing noise and interference, making it well-suited for
complex and dynamic wireless environments. Additionally,
LWM’s bidirectional attention enables each patch to attend
to both preceding and following patches, capturing inter-
subcarrier dependencies and spatial correlations for improved
modeling of multipath propagation.

A key strength of self-attention in LWM is its potential
for interpretability and sensitivity analysis in wireless com-
munications. Unlike traditional deep learning models, where
feature extraction remains opaque, attention scores offer direct
insight into how different channel components contribute to
predictions. By analyzing these scores, wireless engineers
can assess which subcarriers, antennas, or spatial regions
are most influential, enabling improved resource allocation,
interference mitigation, and adaptive beamforming strategies.
This is particularly valuable in CSI compression, where priori-
tizing highly informative channel components can significantly
reduce feedback overhead without sacrificing performance.

12

Lo
S

st
at

us
Be

st
 D

FT
 v

ec
to

r
Raw channels CLS embeddings Fine-tuned CLS embeddingsScenario layout

Figure 5: This figure visualizes the distribution of users in the DeepMIMO Denver scenario based on their LoS/NLoS status (top row) and strongest DFT
beam index among 8 beams (bottom row). User channels are projected into 2D using t-SNE, comparing raw channels, task-agnostic (general-purpose) LWM
embeddings, and fine-tuned LWM embeddings for each task. As seen in Fig. 4, CLS embeddings clearly separate LoS and NLoS channels, enabling high
zero-shot classification and strong initialization for downstream training with minimal data. Fine-tuning further enhances downstream task performance.

Furthermore, multi-head attention enhances interpretability
by providing a layered perspective on wireless channels.
Each attention head captures different propagation character-
istics—one may focus on local variations in signal strength,
while another identifies global trends across subcarriers. This
allows for detailed sensitivity analysis, helping researchers
understand how different signal components impact model pre-
dictions under varying SNR conditions. By tracking attention
shifts across different environments, engineers can evaluate
robustness to channel variations, identify learning weaknesses,
and refine architectures for real-world deployment.

Overall, LWM’s self-attention framework transforms wire-
less feature extraction into an interpretable and adaptive pro-
cess. With its ability to highlight critical channel features, fa-
cilitate sensitivity analysis, and dynamically adjust to varying
conditions, LWM is not just a powerful inference model but
also a valuable tool for optimizing wireless system design and
performance.

B. Discussion on Masked Channel Modeling

MCM pre-trains LWM by randomly masking subsets of
input channel patches and optimizing the model to recon-
struct them via contextual dependencies learned through self-
attention. Unlike conventional denoising techniques, MCM
enforces hierarchical feature disentanglement, compelling the
encoder to capture invariant physical-layer structures (e.g.,
multipath delay profiles, spatial-spectral correlations) while
discarding transient noise artifacts. By training on partial
observations, LWM’s transformer layers develop noise-robust
latent representations, where the CLS token aggregates global
signal statistics to infer missing or corrupted patches. This self-
supervised objective aligns embeddings with channel seman-
tics rather than pixel-level fidelity, enabling joint denoising
and feature extraction without explicit noise modeling. The
result is a unified framework that suppresses interference

(e.g., fading, estimation errors) while preserving discriminative
patterns critical for downstream tasks, bridging robustness and
adaptability in dynamic wireless environments.

C. LWM vs. Autoencoders Embeddings

Autoencoders (AEs) [29] and LWM share two core
conceptual similarities despite differing in implementation:
reconstruction-driven training objectives and compact la-
tent representations. Both architectures employ reconstruction
losses—AEs through pixel-level signal recovery (e.g., recon-
structing raw CSI matrices) and LWM via MCM, which recon-
structs masked patches by inferring contextual relationships.
However, their objectives diverge in focus: AEs prioritize loss-
less reconstruction fidelity, while LWM emphasizes semantic
feature recovery (e.g., multipath structure, spatial correla-
tions) to build universal channel understanding. Second, both
generate compact embeddings—AEs produce low-dimensional
latent vectors, and LWM isolates a single CLS token from
its full embedding sequence—but their utility differs. AE
embeddings remain tightly coupled to decoder-dependent re-
construction, limiting their plug-and-play adaptability, whereas
LWM’s CLS token distills global channel semantics into a
task-agnostic representation, enabling direct compatibility with
diverse downstream tasks (classification, regression, decision-
making) without architectural overhauls. Thus, while both
architectures compress inputs into compact representations,
LWM’s embeddings prioritize versatile feature abstraction over
pixel-perfect reconstruction, making them inherently adaptable
to dynamic wireless decision-making workflows.

X. CONCLUSION

In this work, we introduced LWM, a pre-trained foundation
model specifically designed for wireless communication and
sensing channels. LWM draws inspiration from LLMs and

13

Co
ar

se
-g

ra
in

ed
 d

et
ai

ls
Fi

ne
-g

ra
in

ed
 d

et
ai

ls

Progression of encoder layers

Heads

Figure 6: This figure shows attention maps of patches within a channel across
LWM layers and heads. Rows represent layers, columns represent heads, and
axes of each attention map denote query and key patch indices. Lighter colors
indicate higher self-attention, while darker maps in lower layers suggest a
focus on fine details, making them ideal for task-specific fine-tuning.

Vision Transformers. Using a masked channel modeling strat-
egy within a self-supervised framework, LWM is pre-trained
to predict masked portions of the input via self-attention
features and simple linear layers. Once pre-trained, LWM can
generate real-time embeddings for raw channels, extracting
rich, complex patterns from the input and consistently outper-
forming raw channels in downstream tasks. The LWM model
is publicly available now.

REFERENCES

[1] S. Alikhani, G. Charan, and A. Alkhateeb, “LWM: A Pre-trained
Wireless Foundation Model for Universal Feature Extraction,” in IEEE
International Conference on Machine Learning for Communication and
Networking, IEEE, 2025.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023.

[3] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal,
A. Alkhateeb, and G. C. Trichopoulos, “Wireless communications and
applications above 100 GHz: Opportunities and challenges for 6G and
beyond,” IEEE access, vol. 7, pp. 78729–78757, 2019.

[4] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road
towards 6G: A comprehensive survey,” IEEE Open Journal of the
Communications Society, vol. 2, pp. 334–366, 2021.

[5] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, 2017.

[6] W. Yu, F. Sohrabi, and T. Jiang, “Role of deep learning in wireless
communications,” IEEE BITS the Information Theory Magazine, vol. 2,
no. 2, pp. 56–72, 2022.

[7] M. Alrabeiah and A. Alkhateeb, “Deep learning for mmWave beam and
blockage prediction using sub-6 GHz channels,” IEEE Transactions on
Communications, vol. 68, no. 9, pp. 5504–5518, 2020.

[8] M. Alrabeiah and A. Alkhateeb, “Deep learning for TDD and FDD
massive MIMO: Mapping channels in space and frequency,” in 2019
53rd asilomar conference on signals, systems, and computers, pp. 1465–
1470, IEEE, 2019.

[9] A. Jagannath, J. Jagannath, and T. Melodia, “Redefining wireless com-
munication for 6G: Signal processing meets deep learning with deep
unfolding,” IEEE Transactions on Artificial Intelligence, vol. 2, no. 6,
pp. 528–536, 2021.

[10] A. Diba, M. Fayyaz, V. Sharma, A. H. Karami, M. M. Arzani,
R. Yousefzadeh, and L. Van Gool, “Temporal 3D convnets: New
architecture and transfer learning for video classification,” arXiv preprint
arXiv:1711.08200, 2017.

[11] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2625–
2634, 2015.

[12] D. Bahdanau, “Neural machine translation by jointly learning to align
and translate,” arXiv preprint arXiv:1409.0473, 2014.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[14] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, et al.,
“Mistral 7B,” arXiv preprint arXiv:2310.06825, 2023.

[15] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[16] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al., “GPT-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[17] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representations,”
Advances in neural information processing systems, vol. 33, pp. 12449–
12460, 2020.

[18] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak super-
vision,” in International conference on machine learning, pp. 28492–
28518, PMLR, 2023.

[19] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and
A. Mohamed, “Hubert: Self-supervised speech representation learning
by masked prediction of hidden units,” IEEE/ACM transactions on
audio, speech, and language processing, vol. 29, pp. 3451–3460, 2021.

[20] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” 2021.

[21] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,
“Transformers in vision: A survey,” ACM Computing Surveys, vol. 54,
p. 1–41, Jan. 2022.

[22] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao,
C. Xu, Y. Xu, et al., “A survey on vision transformer,” IEEE transactions
on pattern analysis and machine intelligence, vol. 45, no. 1, pp. 87–110,
2022.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, p. 1735–1780, Nov. 1997.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[25] C.-F. Chen, Q. Fan, and R. Panda, “CrossViT: Cross-attention multi-
scale vision transformer for image classification,” 2021.

[26] L. Wu, W. Zhang, T. Jiang, W. Yang, X. Jin, and W. Zeng, “[CLS] token
is all you need for zero-shot semantic segmentation,” 2023.

[27] A. Alkhateeb, “DeepMIMO: A generic deep learning dataset for mil-
limeter wave and massive MIMO applications,” in Proc. of Information
Theory and Applications Workshop (ITA), (San Diego, CA), pp. 1–8,
Feb 2019.

[28] I. Tenney, P. Xia, B. Chen, A. Wang, A. Poliak, R. T. McCoy, N. Kim,
B. V. Durme, S. R. Bowman, D. Das, and E. Pavlick, “What do you
learn from context? probing for sentence structure in contextualized
word representations,” 2019.

[29] J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, “Convolutional neural net-
work based multiple-rate compressive sensing for massive MIMO CSI
feedback: Design, simulation, and analysis,” 2019.

http://arxiv.org/abs/1711.08200
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2303.08774

	Introduction
	Prior Work
	LWM
	Data Preprocessing: Masking and Embedding
	Patch Generation
	Masked Channel Modeling
	CLS Patch
	Input Embedding

	Model Architecture
	Self-Attention Mechanism
	Multi-Head Attention
	Feed-Forward Network (FFN)
	Layer Normalization and Residual Connections

	Pre-Training
	Pre-Training Dataset
	Wireless Channel Adaptation for Transformer Architecture
	Pre-Training Loss Function
	Pre-Training Setup Parameters

	Inference
	Downstream Task Evaluation
	Sub-6 to mmWave Beam Prediction
	LoS/NLoS Classification

	Discussion and Remarks
	Discussion on Attention
	Discussion on Masked Channel Modeling
	LWM vs. Autoencoders Embeddings

	Conclusion
	References

