Upload tutorial.py
Browse files- tutorial.py +275 -0
tutorial.py
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
|
| 5 |
+
def clone_dataset_scenario(repo_url, model_repo_dir="./LWM", scenarios_dir="scenarios"):
|
| 6 |
+
"""
|
| 7 |
+
Clones all scenarios from a repository, ensuring all files (small and large) are downloaded.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
repo_url (str): URL of the Git repository
|
| 11 |
+
model_repo_dir (str): Path to the model repository
|
| 12 |
+
scenarios_dir (str): Directory name for storing scenarios
|
| 13 |
+
"""
|
| 14 |
+
current_dir = os.path.basename(os.getcwd())
|
| 15 |
+
if current_dir == "LWM":
|
| 16 |
+
model_repo_dir = "."
|
| 17 |
+
|
| 18 |
+
scenarios_path = os.path.join(model_repo_dir, scenarios_dir)
|
| 19 |
+
os.makedirs(scenarios_path, exist_ok=True)
|
| 20 |
+
|
| 21 |
+
original_dir = os.getcwd()
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
if os.path.exists(scenarios_path):
|
| 25 |
+
shutil.rmtree(scenarios_path)
|
| 26 |
+
|
| 27 |
+
print("Cloning entire repository into temporary directory ...")
|
| 28 |
+
subprocess.run([
|
| 29 |
+
"git", "clone",
|
| 30 |
+
repo_url,
|
| 31 |
+
scenarios_path
|
| 32 |
+
], check=True)
|
| 33 |
+
|
| 34 |
+
os.chdir(scenarios_path)
|
| 35 |
+
|
| 36 |
+
print("Pulling all files using Git LFS ...")
|
| 37 |
+
subprocess.run(["git", "lfs", "install"], check=True)
|
| 38 |
+
subprocess.run(["git", "lfs", "pull"], check=True)
|
| 39 |
+
|
| 40 |
+
print(f"Successfully cloned all scenarios into {scenarios_path}")
|
| 41 |
+
|
| 42 |
+
except subprocess.CalledProcessError as e:
|
| 43 |
+
print(f"Error cloning scenarios: {str(e)}")
|
| 44 |
+
finally:
|
| 45 |
+
if os.path.exists(scenarios_path):
|
| 46 |
+
shutil.rmtree(scenarios_path)
|
| 47 |
+
os.chdir(original_dir)
|
| 48 |
+
#%%
|
| 49 |
+
model_repo_url = "https://huggingface.co/wi-lab/lwm"
|
| 50 |
+
model_repo_dir = "./LWM"
|
| 51 |
+
|
| 52 |
+
if not os.path.exists(model_repo_dir):
|
| 53 |
+
print(f"Cloning model repository from {model_repo_url}...")
|
| 54 |
+
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
| 55 |
+
#%%
|
| 56 |
+
import numpy as np
|
| 57 |
+
dataset_repo_url = "https://huggingface.co/datasets/wi-lab/lwm"
|
| 58 |
+
clone_dataset_scenario(dataset_repo_url, model_repo_dir)
|
| 59 |
+
#%%
|
| 60 |
+
if os.path.exists(model_repo_dir):
|
| 61 |
+
os.chdir(model_repo_dir)
|
| 62 |
+
print(f"Changed working directory to {os.getcwd()}")
|
| 63 |
+
else:
|
| 64 |
+
print(f"Directory {model_repo_dir} does not exist. Please check if the repository is cloned properly.")
|
| 65 |
+
#%%
|
| 66 |
+
from input_preprocess import tokenizer
|
| 67 |
+
from lwm_model import lwm
|
| 68 |
+
import torch
|
| 69 |
+
|
| 70 |
+
scenario_names = np.array([
|
| 71 |
+
"city_18_denver", "city_15_indianapolis", "city_19_oklahoma",
|
| 72 |
+
"city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
|
| 73 |
+
])
|
| 74 |
+
scenario_idxs = np.array([0, 1, 2, 3, 4, 5])[3]
|
| 75 |
+
selected_scenario_names = scenario_names[scenario_idxs]
|
| 76 |
+
|
| 77 |
+
preprocessed_chs = tokenizer(
|
| 78 |
+
selected_scenario_names=selected_scenario_names,
|
| 79 |
+
manual_data=None,
|
| 80 |
+
gen_raw=True,
|
| 81 |
+
snr_db=None
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 85 |
+
print(f"Loading the LWM model on {device} ...")
|
| 86 |
+
model = lwm.from_pretrained(device=device)
|
| 87 |
+
#%%
|
| 88 |
+
from inference import lwm_inference, create_raw_dataset
|
| 89 |
+
input_types = ['cls_emb', 'channel_emb', 'raw']
|
| 90 |
+
selected_input_type = input_types[2]
|
| 91 |
+
|
| 92 |
+
if selected_input_type in ['cls_emb', 'channel_emb']:
|
| 93 |
+
dataset = lwm_inference(preprocessed_chs, selected_input_type, model, device)
|
| 94 |
+
else:
|
| 95 |
+
dataset = create_raw_dataset(preprocessed_chs, device)
|
| 96 |
+
#%%
|
| 97 |
+
from input_preprocess import create_labels
|
| 98 |
+
n_beams = 16
|
| 99 |
+
tasks = ['LoS/NLoS Classification', 'Beam Prediction']
|
| 100 |
+
task = tasks[0]
|
| 101 |
+
labels = create_labels(task, selected_scenario_names, n_beams=n_beams)
|
| 102 |
+
# %% Dimensionality Reduction Visualization
|
| 103 |
+
|
| 104 |
+
# Import the dimensionality reduction plotting function
|
| 105 |
+
from utils import plot_dimensionality_reduction
|
| 106 |
+
|
| 107 |
+
# Iterate over tasks (e.g., LoS/NLoS Classification, Beam Prediction)
|
| 108 |
+
for task in tasks:
|
| 109 |
+
|
| 110 |
+
# Create labels for the current task
|
| 111 |
+
labels = create_labels(task, selected_scenario_names, n_beams=n_beams)
|
| 112 |
+
|
| 113 |
+
# Iterate over input types (e.g., raw data or embeddings)
|
| 114 |
+
for input_type_idx, input_type in enumerate(input_types):
|
| 115 |
+
|
| 116 |
+
# Select the current input type
|
| 117 |
+
selected_input_type = input_types[input_type_idx]
|
| 118 |
+
|
| 119 |
+
# Prepare dataset based on input type
|
| 120 |
+
if selected_input_type in ['cls_emb', 'channel_emb']:
|
| 121 |
+
dataset = lwm_inference(
|
| 122 |
+
preprocessed_chs,
|
| 123 |
+
selected_input_type,
|
| 124 |
+
model,
|
| 125 |
+
device
|
| 126 |
+
)
|
| 127 |
+
else:
|
| 128 |
+
dataset = create_raw_dataset(preprocessed_chs, device)
|
| 129 |
+
|
| 130 |
+
# Plot dimensionality reduction for the dataset
|
| 131 |
+
plot_dimensionality_reduction(
|
| 132 |
+
dataset,
|
| 133 |
+
method='all', # Use all available dimensionality reduction methods
|
| 134 |
+
labels=labels, # Labels for visualization
|
| 135 |
+
task=task, # Current task (for title or labeling)
|
| 136 |
+
input_type=input_type # Current input type (for title or labeling)
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
#%% TRAINING
|
| 140 |
+
#%% TRAINING PARAMETERS
|
| 141 |
+
task = ['LoS/NLoS Classification', 'Beam Prediction'][0] # Select the task
|
| 142 |
+
n_trials = 10 # Number of trials for each configuration
|
| 143 |
+
num_classes = 2 if task == 'LoS/NLoS Classification' else n_beams # Set number of classes based on the task
|
| 144 |
+
input_types = ['raw', 'cls_emb'] # Types of input data
|
| 145 |
+
split_ratios = np.array([.005, .0075, .01, .015, .02, .03,
|
| 146 |
+
.05, .1, .25, .5, .8]) # Dataset split ratios
|
| 147 |
+
f1_scores = np.zeros((n_trials, len(input_types), len(split_ratios))) # Store F1 scores for each trial, input type, and split ratio
|
| 148 |
+
labels = create_labels(task, selected_scenario_names, n_beams=n_beams) # Create labels for the selected task
|
| 149 |
+
|
| 150 |
+
#%% TRAINING
|
| 151 |
+
from utils import get_data_loaders, FCN, train_model, plot_metrics
|
| 152 |
+
|
| 153 |
+
# Iterate over input types (e.g., raw data or embeddings)
|
| 154 |
+
for input_type_idx, input_type in enumerate(input_types):
|
| 155 |
+
|
| 156 |
+
# Prepare dataset based on input type
|
| 157 |
+
if input_type in ['cls_emb', 'channel_emb']:
|
| 158 |
+
dataset = lwm_inference(preprocessed_chs, input_type, model, device)
|
| 159 |
+
else:
|
| 160 |
+
dataset = create_raw_dataset(preprocessed_chs, device)
|
| 161 |
+
|
| 162 |
+
# Reshape dataset for training
|
| 163 |
+
dataset = dataset.view(dataset.size(0), -1)
|
| 164 |
+
input_dim = dataset.shape[-1] # Get input dimension for the model
|
| 165 |
+
|
| 166 |
+
# Iterate over different dataset split ratios
|
| 167 |
+
for split_ratio_idx, split_ratio in enumerate(split_ratios):
|
| 168 |
+
|
| 169 |
+
n_train = int(split_ratio * dataset.shape[0]) # Calculate number of training samples
|
| 170 |
+
|
| 171 |
+
# Run multiple trials for each split ratio
|
| 172 |
+
for trial in range(n_trials):
|
| 173 |
+
|
| 174 |
+
print(f"\ninput type: {input_type}, \nnumber of training samples: {int(split_ratio*len(dataset))}, \ntrial: {trial}\n")
|
| 175 |
+
|
| 176 |
+
torch.manual_seed(trial) # Set seed for reproducibility
|
| 177 |
+
train_loader, test_loader = get_data_loaders(
|
| 178 |
+
dataset,
|
| 179 |
+
labels,
|
| 180 |
+
batch_size=128,
|
| 181 |
+
split_ratio=split_ratio
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Initialize the Fully Connected Network (FCN) model
|
| 185 |
+
FCN_model = FCN(input_dim=input_dim, num_classes=num_classes)
|
| 186 |
+
|
| 187 |
+
# Train the model and retrieve losses and F1 scores
|
| 188 |
+
train_losses, test_f1_scores = train_model(
|
| 189 |
+
FCN_model,
|
| 190 |
+
train_loader,
|
| 191 |
+
test_loader,
|
| 192 |
+
epochs=120,
|
| 193 |
+
lr=0.0001 if input_type == "raw" else 0.001, # Learning rate depends on input type
|
| 194 |
+
device=device,
|
| 195 |
+
decay_step=30,
|
| 196 |
+
decay_rate=0.5
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
# Store the final F1 score for this trial
|
| 200 |
+
f1_scores[trial, input_type_idx, split_ratio_idx] = test_f1_scores[0, -1]
|
| 201 |
+
|
| 202 |
+
# Plot metrics for the current trial
|
| 203 |
+
# plot_metrics(test_f1_scores, [input_type])
|
| 204 |
+
|
| 205 |
+
# Plot average F1 scores across all trials for each input type and split ratio
|
| 206 |
+
plot_metrics(
|
| 207 |
+
np.mean(f1_scores, axis=0), # Average F1 scores across trials
|
| 208 |
+
input_types,
|
| 209 |
+
np.asarray(split_ratios * dataset.shape[0], dtype=int), # Convert split ratios to actual sample counts
|
| 210 |
+
flag=1
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
# %% Few-Shot Learning with Pretrained Embeddings
|
| 214 |
+
|
| 215 |
+
# Initialize array to store F1 scores for KNN classification
|
| 216 |
+
f1_scores_knn = np.zeros((n_trials, len(input_types), len(split_ratios)))
|
| 217 |
+
|
| 218 |
+
# Import the classification function
|
| 219 |
+
from utils import classify_by_euclidean_distance
|
| 220 |
+
|
| 221 |
+
# Iterate over input types (e.g., raw data or embeddings)
|
| 222 |
+
for input_type_idx, input_type in enumerate(input_types):
|
| 223 |
+
|
| 224 |
+
# Prepare dataset based on input type
|
| 225 |
+
if input_type in ['cls_emb', 'channel_emb']:
|
| 226 |
+
dataset = lwm_inference(preprocessed_chs, input_type, model, device)
|
| 227 |
+
else:
|
| 228 |
+
dataset = create_raw_dataset(preprocessed_chs, device)
|
| 229 |
+
|
| 230 |
+
# Reshape dataset for compatibility
|
| 231 |
+
dataset = dataset.view(dataset.size(0), -1)
|
| 232 |
+
input_dim = dataset.shape[-1] # Get input dimension
|
| 233 |
+
|
| 234 |
+
# Iterate over different dataset split ratios
|
| 235 |
+
for split_ratio_idx, split_ratio in enumerate(split_ratios):
|
| 236 |
+
|
| 237 |
+
n_train = int(split_ratio * dataset.shape[0]) # Calculate number of training samples
|
| 238 |
+
|
| 239 |
+
# Run multiple trials for each split ratio
|
| 240 |
+
for trial in range(n_trials):
|
| 241 |
+
|
| 242 |
+
torch.manual_seed(trial) # Set seed for reproducibility
|
| 243 |
+
train_loader, test_loader = get_data_loaders(
|
| 244 |
+
dataset,
|
| 245 |
+
labels,
|
| 246 |
+
batch_size=128,
|
| 247 |
+
split_ratio=split_ratio
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
# Perform classification using Euclidean distance
|
| 251 |
+
f1 = classify_by_euclidean_distance(
|
| 252 |
+
train_loader,
|
| 253 |
+
test_loader,
|
| 254 |
+
device="cpu"
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# Store the F1 score for this trial
|
| 258 |
+
f1_scores_knn[trial, input_type_idx, split_ratio_idx] = f1
|
| 259 |
+
|
| 260 |
+
# Plot average F1 scores across all trials for each input type and split ratio
|
| 261 |
+
plot_metrics(
|
| 262 |
+
np.mean(f1_scores_knn, axis=0), # Average F1 scores across trials
|
| 263 |
+
input_types,
|
| 264 |
+
np.asarray(split_ratios * dataset.shape[0], dtype=int), # Convert split ratios to actual sample counts
|
| 265 |
+
flag=1
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
|