File size: 3,808 Bytes
f063aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4075a2
f063aed
 
 
 
 
e4075a2
f063aed
e4075a2
f063aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
library_name: transformers
language:
- ko
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- whsNect/__g__d___
metrics:
- wer
model-index:
- name: __g__d____model
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: whsNect/__g__d___
      type: whsNect/__g__d___
      args: 'config: ko, split: valid'
    metrics:
    - type: wer
      value: 8.460209304600138
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# __g__d____model

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the whsNect/__g__d___ dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0502
- Wer: 8.4602

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 15000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer     |
|:-------------:|:-------:|:-----:|:---------------:|:-------:|
| 0.0361        | 1.6722  | 500   | 0.0385          | 9.2003  |
| 0.0099        | 3.3445  | 1000  | 0.0313          | 5.2457  |
| 0.006         | 5.0167  | 1500  | 0.0335          | 6.3769  |
| 0.003         | 6.6890  | 2000  | 0.0348          | 4.8773  |
| 0.0021        | 8.3612  | 2500  | 0.0351          | 17.5822 |
| 0.0013        | 10.0334 | 3000  | 0.0369          | 5.0892  |
| 0.0016        | 11.7057 | 3500  | 0.0371          | 10.6837 |
| 0.0011        | 13.3779 | 4000  | 0.0367          | 5.8716  |
| 0.0014        | 15.0502 | 4500  | 0.0385          | 46.1350 |
| 0.0008        | 16.7224 | 5000  | 0.0408          | 10.2338 |
| 0.0006        | 18.3946 | 5500  | 0.0400          | 9.9077  |
| 0.0007        | 20.0669 | 6000  | 0.0410          | 11.2053 |
| 0.0003        | 21.7391 | 6500  | 0.0414          | 22.9192 |
| 0.0002        | 23.4114 | 7000  | 0.0415          | 17.6768 |
| 0.0009        | 25.0836 | 7500  | 0.0420          | 22.1074 |
| 0.0005        | 26.7559 | 8000  | 0.0440          | 14.8828 |
| 0.0005        | 28.4281 | 8500  | 0.0417          | 10.4065 |
| 0.0001        | 30.1003 | 9000  | 0.0441          | 20.4545 |
| 0.0001        | 31.7726 | 9500  | 0.0453          | 9.3176  |
| 0.0001        | 33.4448 | 10000 | 0.0460          | 11.3553 |
| 0.0001        | 35.1171 | 10500 | 0.0466          | 10.9999 |
| 0.0001        | 36.7893 | 11000 | 0.0471          | 11.0749 |
| 0.0001        | 38.4615 | 11500 | 0.0479          | 12.3887 |
| 0.0           | 40.1338 | 12000 | 0.0483          | 10.3413 |
| 0.0           | 41.8060 | 12500 | 0.0487          | 8.3363  |
| 0.0001        | 43.4783 | 13000 | 0.0491          | 8.6852  |
| 0.0           | 45.1505 | 13500 | 0.0495          | 7.7462  |
| 0.0           | 46.8227 | 14000 | 0.0499          | 8.1472  |
| 0.0           | 48.4950 | 14500 | 0.0501          | 7.9516  |
| 0.0           | 50.1672 | 15000 | 0.0502          | 8.4602  |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.2.2+cu121
- Datasets 3.4.1
- Tokenizers 0.21.1