Upload pipeline.py
Browse files- pipeline.py +403 -0
pipeline.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import warnings
|
3 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import PIL
|
7 |
+
from PIL import Image, ImageFilter, ImageOps
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
11 |
+
from diffusers.pipelines.stable_diffusion import (
|
12 |
+
StableDiffusionInpaintPipeline,
|
13 |
+
StableDiffusionPipelineOutput,
|
14 |
+
StableDiffusionSafetyChecker,
|
15 |
+
)
|
16 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
|
17 |
+
|
18 |
+
|
19 |
+
def fill_images_masks(images: Union[list, PIL.Image.Image], masks: Union[list, PIL.Image.Image]):
|
20 |
+
|
21 |
+
new_images = []
|
22 |
+
|
23 |
+
if isinstance(images, PIL.Image.Image) is True:
|
24 |
+
if isinstance(masks, PIL.Image.Image) is False:
|
25 |
+
raise TypeError(f"`image` is a PIL.Image.Image but `mask` (type: {type(masks)} is not")
|
26 |
+
images = [images]
|
27 |
+
masks = [masks]
|
28 |
+
|
29 |
+
if isinstance(images, list) is True:
|
30 |
+
if isinstance(masks, list) is False:
|
31 |
+
raise TypeError(f"`image` is a list but `mask` (type: {type(masks)} is not")
|
32 |
+
|
33 |
+
for image, mask in zip(images, masks):
|
34 |
+
filled_image = fill(image, mask)
|
35 |
+
new_images.append(filled_image)
|
36 |
+
else:
|
37 |
+
raise ValueError(f"image is not a list but {type(images)}")
|
38 |
+
|
39 |
+
return new_images, masks
|
40 |
+
|
41 |
+
|
42 |
+
def fill(image: PIL.Image.Image, mask: PIL.Image.Image):
|
43 |
+
"""fills masked regions with colors from image using blur. Not extremely effective."""
|
44 |
+
|
45 |
+
image_mod = Image.new('RGBA', (image.width, image.height))
|
46 |
+
|
47 |
+
image_masked = Image.new('RGBa', (image.width, image.height))
|
48 |
+
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert('L')))
|
49 |
+
|
50 |
+
image_masked = image_masked.convert('RGBa')
|
51 |
+
|
52 |
+
for radius, repeats in [(256, 1), (64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]:
|
53 |
+
blurred = image_masked.filter(ImageFilter.GaussianBlur(radius)).convert('RGBA')
|
54 |
+
for _ in range(repeats):
|
55 |
+
image_mod.alpha_composite(blurred)
|
56 |
+
|
57 |
+
return image_mod.convert("RGB")
|
58 |
+
|
59 |
+
class StableDiffusionFillInpaintPipeline(StableDiffusionInpaintPipeline):
|
60 |
+
|
61 |
+
@torch.no_grad()
|
62 |
+
def __call__(
|
63 |
+
self,
|
64 |
+
prompt: Union[str, List[str]] = None,
|
65 |
+
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
66 |
+
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
67 |
+
height: Optional[int] = None,
|
68 |
+
width: Optional[int] = None,
|
69 |
+
strength: float = 1.0,
|
70 |
+
num_inference_steps: int = 50,
|
71 |
+
guidance_scale: float = 7.5,
|
72 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
73 |
+
num_images_per_prompt: Optional[int] = 1,
|
74 |
+
eta: float = 0.0,
|
75 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
76 |
+
latents: Optional[torch.FloatTensor] = None,
|
77 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
78 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
79 |
+
output_type: Optional[str] = "pil",
|
80 |
+
return_dict: bool = True,
|
81 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
82 |
+
callback_steps: int = 1,
|
83 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
84 |
+
):
|
85 |
+
r"""
|
86 |
+
Function invoked when calling the pipeline for generation.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
prompt (`str` or `List[str]`, *optional*):
|
90 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
91 |
+
instead.
|
92 |
+
image (`PIL.Image.Image`):
|
93 |
+
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
94 |
+
be masked out with `mask_image` and repainted according to `prompt`.
|
95 |
+
mask_image (`PIL.Image.Image`):
|
96 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
97 |
+
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
98 |
+
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
99 |
+
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
100 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
101 |
+
The height in pixels of the generated image.
|
102 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
103 |
+
The width in pixels of the generated image.
|
104 |
+
strength (`float`, *optional*, defaults to 1.):
|
105 |
+
Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
|
106 |
+
between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
|
107 |
+
`strength`. The number of denoising steps depends on the amount of noise initially added. When
|
108 |
+
`strength` is 1, added noise will be maximum and the denoising process will run for the full number of
|
109 |
+
iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
|
110 |
+
portion of the reference `image`.
|
111 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
112 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
113 |
+
expense of slower inference.
|
114 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
115 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
116 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
117 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
118 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
119 |
+
usually at the expense of lower image quality.
|
120 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
121 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
122 |
+
`negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale`
|
123 |
+
is less than `1`).
|
124 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
125 |
+
The number of images to generate per prompt.
|
126 |
+
eta (`float`, *optional*, defaults to 0.0):
|
127 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
128 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
129 |
+
generator (`torch.Generator`, *optional*):
|
130 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
131 |
+
to make generation deterministic.
|
132 |
+
latents (`torch.FloatTensor`, *optional*):
|
133 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
134 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
135 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
136 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
137 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
138 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
139 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
140 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
141 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
142 |
+
argument.
|
143 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
144 |
+
The output format of the generate image. Choose between
|
145 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
146 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
147 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
148 |
+
plain tuple.
|
149 |
+
callback (`Callable`, *optional*):
|
150 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
151 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
152 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
153 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
154 |
+
called at every step.
|
155 |
+
cross_attention_kwargs (`dict`, *optional*):
|
156 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
157 |
+
`self.processor` in
|
158 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
159 |
+
Examples:
|
160 |
+
|
161 |
+
```py
|
162 |
+
>>> import PIL
|
163 |
+
>>> import requests
|
164 |
+
>>> import torch
|
165 |
+
>>> from io import BytesIO
|
166 |
+
|
167 |
+
>>> from diffusers import StableDiffusionInpaintPipeline
|
168 |
+
|
169 |
+
|
170 |
+
>>> def download_image(url):
|
171 |
+
... response = requests.get(url)
|
172 |
+
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
173 |
+
|
174 |
+
|
175 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
176 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
177 |
+
|
178 |
+
>>> init_image = download_image(img_url).resize((512, 512))
|
179 |
+
>>> mask_image = download_image(mask_url).resize((512, 512))
|
180 |
+
|
181 |
+
>>> pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
182 |
+
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
183 |
+
... )
|
184 |
+
>>> pipe = pipe.to("cuda")
|
185 |
+
|
186 |
+
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
187 |
+
>>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
|
188 |
+
```
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
192 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
193 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
194 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
195 |
+
(nsfw) content, according to the `safety_checker`.
|
196 |
+
"""
|
197 |
+
# 0. Default height and width to unet
|
198 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
199 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
200 |
+
|
201 |
+
# 1. Check inputs
|
202 |
+
self.check_inputs(
|
203 |
+
prompt,
|
204 |
+
height,
|
205 |
+
width,
|
206 |
+
strength,
|
207 |
+
callback_steps,
|
208 |
+
negative_prompt,
|
209 |
+
prompt_embeds,
|
210 |
+
negative_prompt_embeds,
|
211 |
+
)
|
212 |
+
|
213 |
+
# 2. Define call parameters
|
214 |
+
if prompt is not None and isinstance(prompt, str):
|
215 |
+
batch_size = 1
|
216 |
+
elif prompt is not None and isinstance(prompt, list):
|
217 |
+
batch_size = len(prompt)
|
218 |
+
else:
|
219 |
+
batch_size = prompt_embeds.shape[0]
|
220 |
+
|
221 |
+
device = self._execution_device
|
222 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
223 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
224 |
+
# corresponds to doing no classifier free guidance.
|
225 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
226 |
+
|
227 |
+
# 3. Encode input prompt
|
228 |
+
text_encoder_lora_scale = (
|
229 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
230 |
+
)
|
231 |
+
prompt_embeds = self._encode_prompt(
|
232 |
+
prompt,
|
233 |
+
device,
|
234 |
+
num_images_per_prompt,
|
235 |
+
do_classifier_free_guidance,
|
236 |
+
negative_prompt,
|
237 |
+
prompt_embeds=prompt_embeds,
|
238 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
239 |
+
lora_scale=text_encoder_lora_scale,
|
240 |
+
)
|
241 |
+
|
242 |
+
# 4. set timesteps
|
243 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
244 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
245 |
+
num_inference_steps=num_inference_steps, strength=strength, device=device
|
246 |
+
)
|
247 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
248 |
+
if num_inference_steps < 1:
|
249 |
+
raise ValueError(
|
250 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
251 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
252 |
+
)
|
253 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
254 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
255 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
256 |
+
is_strength_max = strength == 1.0
|
257 |
+
|
258 |
+
#Fill mask area
|
259 |
+
if batch_size == 1:
|
260 |
+
original_image, original_mask = [image], [mask_image]
|
261 |
+
|
262 |
+
image, mask_image = fill_images_masks(image, mask_image)
|
263 |
+
|
264 |
+
|
265 |
+
# 5. Preprocess mask and image
|
266 |
+
mask, masked_image, init_image = prepare_mask_and_masked_image(
|
267 |
+
image, mask_image, height, width, return_image=True
|
268 |
+
)
|
269 |
+
|
270 |
+
# 6. Prepare latent variables
|
271 |
+
num_channels_latents = self.vae.config.latent_channels
|
272 |
+
num_channels_unet = self.unet.config.in_channels
|
273 |
+
return_image_latents = num_channels_unet == 4
|
274 |
+
|
275 |
+
latents_outputs = self.prepare_latents(
|
276 |
+
batch_size * num_images_per_prompt,
|
277 |
+
num_channels_latents,
|
278 |
+
height,
|
279 |
+
width,
|
280 |
+
prompt_embeds.dtype,
|
281 |
+
device,
|
282 |
+
generator,
|
283 |
+
latents,
|
284 |
+
image=init_image,
|
285 |
+
timestep=latent_timestep,
|
286 |
+
is_strength_max=is_strength_max,
|
287 |
+
return_noise=True,
|
288 |
+
return_image_latents=return_image_latents,
|
289 |
+
)
|
290 |
+
|
291 |
+
if return_image_latents:
|
292 |
+
latents, noise, image_latents = latents_outputs
|
293 |
+
else:
|
294 |
+
latents, noise = latents_outputs
|
295 |
+
|
296 |
+
# 7. Prepare mask latent variables
|
297 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
298 |
+
mask,
|
299 |
+
masked_image,
|
300 |
+
batch_size * num_images_per_prompt,
|
301 |
+
height,
|
302 |
+
width,
|
303 |
+
prompt_embeds.dtype,
|
304 |
+
device,
|
305 |
+
generator,
|
306 |
+
do_classifier_free_guidance,
|
307 |
+
)
|
308 |
+
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
|
309 |
+
init_image = self._encode_vae_image(init_image, generator=generator)
|
310 |
+
|
311 |
+
# 8. Check that sizes of mask, masked image and latents match
|
312 |
+
if num_channels_unet == 9:
|
313 |
+
# default case for runwayml/stable-diffusion-inpainting
|
314 |
+
num_channels_mask = mask.shape[1]
|
315 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
316 |
+
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
317 |
+
raise ValueError(
|
318 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
319 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
320 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
321 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
322 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
323 |
+
)
|
324 |
+
elif num_channels_unet != 4:
|
325 |
+
raise ValueError(
|
326 |
+
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
327 |
+
)
|
328 |
+
|
329 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
330 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
331 |
+
|
332 |
+
# 10. Denoising loop
|
333 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
334 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
335 |
+
for i, t in enumerate(timesteps):
|
336 |
+
# expand the latents if we are doing classifier free guidance
|
337 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
338 |
+
|
339 |
+
# concat latents, mask, masked_image_latents in the channel dimension
|
340 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
341 |
+
|
342 |
+
if num_channels_unet == 9:
|
343 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
344 |
+
|
345 |
+
# predict the noise residual
|
346 |
+
noise_pred = self.unet(
|
347 |
+
latent_model_input,
|
348 |
+
t,
|
349 |
+
encoder_hidden_states=prompt_embeds,
|
350 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
351 |
+
return_dict=False,
|
352 |
+
)[0]
|
353 |
+
|
354 |
+
# perform guidance
|
355 |
+
if do_classifier_free_guidance:
|
356 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
357 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
358 |
+
|
359 |
+
# compute the previous noisy sample x_t -> x_t-1
|
360 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
361 |
+
|
362 |
+
if num_channels_unet == 4:
|
363 |
+
init_latents_proper = image_latents[:1]
|
364 |
+
init_mask = mask[:1]
|
365 |
+
|
366 |
+
if i < len(timesteps) - 1:
|
367 |
+
noise_timestep = timesteps[i + 1]
|
368 |
+
init_latents_proper = self.scheduler.add_noise(
|
369 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
370 |
+
)
|
371 |
+
|
372 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
373 |
+
|
374 |
+
# call the callback, if provided
|
375 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
376 |
+
progress_bar.update()
|
377 |
+
if callback is not None and i % callback_steps == 0:
|
378 |
+
callback(i, t, latents)
|
379 |
+
|
380 |
+
if not output_type == "latent":
|
381 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
382 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
383 |
+
else:
|
384 |
+
image = latents
|
385 |
+
has_nsfw_concept = None
|
386 |
+
|
387 |
+
if has_nsfw_concept is None:
|
388 |
+
do_denormalize = [True] * image.shape[0]
|
389 |
+
else:
|
390 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
391 |
+
|
392 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
393 |
+
|
394 |
+
image = [Image.composite(generate_img, original_img, mask_img) for generate_img, original_img, mask_img in zip(image, original_image, original_mask)]
|
395 |
+
|
396 |
+
# Offload last model to CPU
|
397 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
398 |
+
self.final_offload_hook.offload()
|
399 |
+
|
400 |
+
if not return_dict:
|
401 |
+
return (image, has_nsfw_concept)
|
402 |
+
|
403 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|