Update README.md
Browse files
README.md
CHANGED
@@ -9,22 +9,18 @@ metrics:
|
|
9 |
- recall
|
10 |
- accuracy
|
11 |
model-index:
|
12 |
-
- name:
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
-
#
|
20 |
|
21 |
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
- Loss: 0.1606
|
24 |
-
- Precision: 1.0
|
25 |
-
- Recall: 1.0
|
26 |
-
- F1 Macro: 1.0
|
27 |
-
- Accuracy: 1.0
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -51,64 +47,6 @@ The following hyperparameters were used during training:
|
|
51 |
- lr_scheduler_type: linear
|
52 |
- num_epochs: 20
|
53 |
|
54 |
-
### Training results
|
55 |
-
|
56 |
-
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
|
57 |
-
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:|
|
58 |
-
| No log | 0 | 0 | 0.3573 | 1.0 | 1.0 | 1.0 | 1.0 |
|
59 |
-
| 0.1215 | 0.3908 | 1000 | 0.1103 | 1.0 | 1.0 | 1.0 | 1.0 |
|
60 |
-
| 0.1107 | 0.7816 | 2000 | 0.1143 | 1.0 | 1.0 | 1.0 | 1.0 |
|
61 |
-
| 0.0892 | 1.1723 | 3000 | 0.1120 | 1.0 | 1.0 | 1.0 | 1.0 |
|
62 |
-
| 0.0893 | 1.5631 | 4000 | 0.1125 | 1.0 | 1.0 | 1.0 | 1.0 |
|
63 |
-
| 0.0888 | 1.9539 | 5000 | 0.1101 | 1.0 | 1.0 | 1.0 | 1.0 |
|
64 |
-
| 0.0433 | 2.3447 | 6000 | 0.1286 | 1.0 | 1.0 | 1.0 | 1.0 |
|
65 |
-
| 0.0524 | 2.7354 | 7000 | 0.1353 | 1.0 | 1.0 | 1.0 | 1.0 |
|
66 |
-
| 0.0302 | 3.1262 | 8000 | 0.1432 | 1.0 | 1.0 | 1.0 | 1.0 |
|
67 |
-
| 0.0344 | 3.5170 | 9000 | 0.1357 | 1.0 | 1.0 | 1.0 | 1.0 |
|
68 |
-
| 0.0331 | 3.9078 | 10000 | 0.1378 | 1.0 | 1.0 | 1.0 | 1.0 |
|
69 |
-
| 0.0227 | 4.2986 | 11000 | 0.1442 | 1.0 | 1.0 | 1.0 | 1.0 |
|
70 |
-
| 0.0211 | 4.6893 | 12000 | 0.1437 | 1.0 | 1.0 | 1.0 | 1.0 |
|
71 |
-
| 0.0184 | 5.0801 | 13000 | 0.1472 | 1.0 | 1.0 | 1.0 | 1.0 |
|
72 |
-
| 0.0188 | 5.4709 | 14000 | 0.1452 | 1.0 | 1.0 | 1.0 | 1.0 |
|
73 |
-
| 0.0238 | 5.8617 | 15000 | 0.1410 | 1.0 | 1.0 | 1.0 | 1.0 |
|
74 |
-
| 0.0142 | 6.2524 | 16000 | 0.1488 | 1.0 | 1.0 | 1.0 | 1.0 |
|
75 |
-
| 0.0125 | 6.6432 | 17000 | 0.1568 | 1.0 | 1.0 | 1.0 | 1.0 |
|
76 |
-
| 0.0119 | 7.0340 | 18000 | 0.1507 | 1.0 | 1.0 | 1.0 | 1.0 |
|
77 |
-
| 0.0177 | 7.4248 | 19000 | 0.1593 | 1.0 | 1.0 | 1.0 | 1.0 |
|
78 |
-
| 0.0136 | 7.8156 | 20000 | 0.1544 | 1.0 | 1.0 | 1.0 | 1.0 |
|
79 |
-
| 0.0118 | 8.2063 | 21000 | 0.1641 | 1.0 | 1.0 | 1.0 | 1.0 |
|
80 |
-
| 0.0152 | 8.5971 | 22000 | 0.1524 | 1.0 | 1.0 | 1.0 | 1.0 |
|
81 |
-
| 0.0113 | 8.9879 | 23000 | 0.1554 | 1.0 | 1.0 | 1.0 | 1.0 |
|
82 |
-
| 0.0114 | 9.3787 | 24000 | 0.1482 | 1.0 | 1.0 | 1.0 | 1.0 |
|
83 |
-
| 0.0121 | 9.7694 | 25000 | 0.1451 | 1.0 | 1.0 | 1.0 | 1.0 |
|
84 |
-
| 0.0089 | 10.1602 | 26000 | 0.1561 | 1.0 | 1.0 | 1.0 | 1.0 |
|
85 |
-
| 0.0087 | 10.5510 | 27000 | 0.1621 | 1.0 | 1.0 | 1.0 | 1.0 |
|
86 |
-
| 0.0114 | 10.9418 | 28000 | 0.1553 | 1.0 | 1.0 | 1.0 | 1.0 |
|
87 |
-
| 0.0061 | 11.3326 | 29000 | 0.1547 | 1.0 | 1.0 | 1.0 | 1.0 |
|
88 |
-
| 0.0075 | 11.7233 | 30000 | 0.1578 | 1.0 | 1.0 | 1.0 | 1.0 |
|
89 |
-
| 0.0063 | 12.1141 | 31000 | 0.1575 | 1.0 | 1.0 | 1.0 | 1.0 |
|
90 |
-
| 0.0081 | 12.5049 | 32000 | 0.1587 | 1.0 | 1.0 | 1.0 | 1.0 |
|
91 |
-
| 0.0088 | 12.8957 | 33000 | 0.1592 | 1.0 | 1.0 | 1.0 | 1.0 |
|
92 |
-
| 0.0062 | 13.2864 | 34000 | 0.1614 | 1.0 | 1.0 | 1.0 | 1.0 |
|
93 |
-
| 0.0085 | 13.6772 | 35000 | 0.1563 | 1.0 | 1.0 | 1.0 | 1.0 |
|
94 |
-
| 0.0056 | 14.0680 | 36000 | 0.1585 | 1.0 | 1.0 | 1.0 | 1.0 |
|
95 |
-
| 0.0046 | 14.4588 | 37000 | 0.1608 | 1.0 | 1.0 | 1.0 | 1.0 |
|
96 |
-
| 0.0066 | 14.8496 | 38000 | 0.1697 | 1.0 | 1.0 | 1.0 | 1.0 |
|
97 |
-
| 0.0068 | 15.2403 | 39000 | 0.1570 | 1.0 | 1.0 | 1.0 | 1.0 |
|
98 |
-
| 0.0046 | 15.6311 | 40000 | 0.1745 | 1.0 | 1.0 | 1.0 | 1.0 |
|
99 |
-
| 0.0062 | 16.0219 | 41000 | 0.1617 | 1.0 | 1.0 | 1.0 | 1.0 |
|
100 |
-
| 0.0056 | 16.4127 | 42000 | 0.1653 | 1.0 | 1.0 | 1.0 | 1.0 |
|
101 |
-
| 0.0053 | 16.8034 | 43000 | 0.1551 | 1.0 | 1.0 | 1.0 | 1.0 |
|
102 |
-
| 0.0026 | 17.1942 | 44000 | 0.1638 | 1.0 | 1.0 | 1.0 | 1.0 |
|
103 |
-
| 0.005 | 17.5850 | 45000 | 0.1555 | 1.0 | 1.0 | 1.0 | 1.0 |
|
104 |
-
| 0.0033 | 17.9758 | 46000 | 0.1577 | 1.0 | 1.0 | 1.0 | 1.0 |
|
105 |
-
| 0.0049 | 18.3665 | 47000 | 0.1545 | 1.0 | 1.0 | 1.0 | 1.0 |
|
106 |
-
| 0.0043 | 18.7573 | 48000 | 0.1589 | 1.0 | 1.0 | 1.0 | 1.0 |
|
107 |
-
| 0.0046 | 19.1481 | 49000 | 0.1588 | 1.0 | 1.0 | 1.0 | 1.0 |
|
108 |
-
| 0.0047 | 19.5389 | 50000 | 0.1596 | 1.0 | 1.0 | 1.0 | 1.0 |
|
109 |
-
| 0.0041 | 19.9297 | 51000 | 0.1606 | 1.0 | 1.0 | 1.0 | 1.0 |
|
110 |
-
|
111 |
-
|
112 |
### Framework versions
|
113 |
|
114 |
- Transformers 4.49.0
|
|
|
9 |
- recall
|
10 |
- accuracy
|
11 |
model-index:
|
12 |
+
- name: finerweb-binary-classifier-mdeberta-4o
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
+
# finerweb-binary-classifier-mdeberta-4o
|
20 |
|
21 |
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
- Loss: 0.1606
|
|
|
|
|
|
|
|
|
24 |
|
25 |
## Model description
|
26 |
|
|
|
47 |
- lr_scheduler_type: linear
|
48 |
- num_epochs: 20
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
### Framework versions
|
51 |
|
52 |
- Transformers 4.49.0
|