--- library_name: transformers language: - id license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - modality:audio - modality:text - format:parquet - generated_from_trainer datasets: - speaker-segmentation model-index: - name: speaker-segmentation-fine-tuned-id results: [] --- # speaker-segmentation-fine-tuned-id This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the speaker-segmentation dataset. It achieves the following results on the evaluation set: - Loss: 0.5964 - Model Preparation Time: 0.0059 - Der: 0.2071 - False Alarm: 0.0393 - Missed Detection: 0.0410 - Confusion: 0.1268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.7607 | 1.0 | 72 | 0.6580 | 0.0059 | 0.2281 | 0.0444 | 0.0462 | 0.1375 | | 0.6374 | 2.0 | 144 | 0.6117 | 0.0059 | 0.2152 | 0.0385 | 0.0452 | 0.1315 | | 0.5943 | 3.0 | 216 | 0.6168 | 0.0059 | 0.2163 | 0.0431 | 0.0412 | 0.1320 | | 0.5547 | 4.0 | 288 | 0.6026 | 0.0059 | 0.2077 | 0.0401 | 0.0410 | 0.1265 | | 0.5579 | 5.0 | 360 | 0.5964 | 0.0059 | 0.2071 | 0.0393 | 0.0410 | 0.1268 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1