whitneyten commited on
Commit
b986d33
·
verified ·
1 Parent(s): c3d9985

End of training

Browse files
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - id
5
+ license: mit
6
+ base_model: pyannote/speaker-diarization-3.1
7
+ tags:
8
+ - speaker-diarization
9
+ - speaker-segmentation
10
+ - modality:audio
11
+ - modality:text
12
+ - format:parquet
13
+ - generated_from_trainer
14
+ datasets:
15
+ - speaker-segmentation
16
+ model-index:
17
+ - name: speaker-segmentation-fine-tuned-id
18
+ results: []
19
+ ---
20
+
21
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
22
+ should probably proofread and complete it, then remove this comment. -->
23
+
24
+ # speaker-segmentation-fine-tuned-id
25
+
26
+ This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the speaker-segmentation dataset.
27
+ It achieves the following results on the evaluation set:
28
+ - Loss: 0.5964
29
+ - Model Preparation Time: 0.0059
30
+ - Der: 0.2071
31
+ - False Alarm: 0.0393
32
+ - Missed Detection: 0.0410
33
+ - Confusion: 0.1268
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 0.001
53
+ - train_batch_size: 32
54
+ - eval_batch_size: 32
55
+ - seed: 42
56
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
57
+ - lr_scheduler_type: cosine
58
+ - num_epochs: 5
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
63
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:|
64
+ | 0.7607 | 1.0 | 72 | 0.6580 | 0.0059 | 0.2281 | 0.0444 | 0.0462 | 0.1375 |
65
+ | 0.6374 | 2.0 | 144 | 0.6117 | 0.0059 | 0.2152 | 0.0385 | 0.0452 | 0.1315 |
66
+ | 0.5943 | 3.0 | 216 | 0.6168 | 0.0059 | 0.2163 | 0.0431 | 0.0412 | 0.1320 |
67
+ | 0.5547 | 4.0 | 288 | 0.6026 | 0.0059 | 0.2077 | 0.0401 | 0.0410 | 0.1265 |
68
+ | 0.5579 | 5.0 | 360 | 0.5964 | 0.0059 | 0.2071 | 0.0393 | 0.0410 | 0.1268 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.49.0
74
+ - Pytorch 2.6.0+cu124
75
+ - Datasets 3.4.1
76
+ - Tokenizers 0.21.1
runs/Mar21_07-16-15_f3015000cd74/events.out.tfevents.1742541480.f3015000cd74.10374.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4f4d44cfa0fc9e9b7bd6ad7ed47352aeecad46b02c6d58eb74f60753fa28b1db
3
- size 10298
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2a17c68dd83f31604e6d42ba61489bf66868f304cf9e894d106110dcef88919
3
+ size 11204