File size: 2,221 Bytes
e12ed86 d5425c8 e12ed86 d5425c8 e12ed86 d5425c8 e12ed86 d5425c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3
license: apache-2.0
language:
- en
---
# π§ Gemma 3 (4B) Fine-Tuned on UnoPIM Docs β by Webkul
This is a fine-tuned version of [`unsloth/gemma-3-4b-it-unsloth-bnb-4bit`](https://huggingface.co/unsloth/gemma-3-4b-it-unsloth-bnb-4bit), optimized and accelerated with [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL for instruction-based text generation tasks.
---
## π Model Summary
- **Base Model:** `unsloth/gemma-3-4b-it-unsloth-bnb-4bit`
- **Fine-Tuned By:** [Webkul](https://webkul.com)
- **License:** Apache-2.0
- **Language:** English
- **Model Type:** Instruction-tuned (4-bit quantized)
- **Training Boost:** ~2x faster training with Unsloth optimizations
---
## π Fine-Tuning Dataset
This model has been fine-tuned specifically on official UnoPIM documentation and user guides available at:
π **[https://docs.unopim.com/](https://docs.unopim.com/)**
### Content Covered:
- Product Information Management (PIM) workflows
- Admin dashboard and module configurations
- API usage and endpoints
- User roles and access control
- Product import/export and sync logic
- Custom field and attribute setups
- Troubleshooting and common use cases
---
## π‘ Use Cases
This model is designed for:
- π§Ύ **Q&A on UnoPIM documentation**
- π¬ **Chatbots for UnoPIM technical support**
- π§ **Contextual assistants inside dev tools**
- π οΈ **Knowledge base automation for onboarding users**
---
## π Quick Start
You can run this model with Hugging Faceβs `transformers` library:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "webkul/gemma-3-4b-it-unopim-docs"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
prompt = "How can I import products in bulk using UnoPIM?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=300)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
π License
This model is distributed under the Apache 2.0 License. See LICENSE for more information. |