--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # ๐Ÿš€ Fine-tuned Gemma 3 Model (4B, 4-bit) by Webkul This repository contains a fine-tuned version of [Unsloth's](https://github.com/unslothai/unsloth) `gemma-3-4b-it` model, optimized for lightweight 4-bit inference and instruction tuning using Hugging Face's [TRL](https://github.com/huggingface/trl) and Unsloth's speed-optimized framework. --- ## ๐Ÿ”ง Model Details - **Base Model:** [`unsloth/gemma-3-4b-it-unsloth-bnb-4bit`](https://huggingface.co/unsloth/gemma-3-4b-it-unsloth-bnb-4bit) - **Fine-tuned By:** [Webkul](https://webkul.com) - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) - **Language:** English (`en`) - **Model Size:** 4B parameters (4-bit quantized) - **Frameworks Used:** Unsloth, Hugging Face Transformers, TRL --- ## ๐Ÿ“š Fine-tuning Dataset This model was fine-tuned on unopim dev documentation available at [https://devdocs.unopim.com/](https://devdocs.unopim.com/), focusing on structured software documentation and developer support content. --- ## ๐Ÿ’ก Intended Use - Conversational AI assistants trained on UnoPIM developer docs - API documentation question answering - Developer tools and chatbot integrations - Contextual helpdesk or onboarding bots for UnoPIM products --- ## ๐Ÿงช How to Use You can use this model with the Hugging Face `transformers` library: ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "webkul/gemma-3-4b-it-unopim-docs" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_text = "How do I integrate the UnoPIM API for product syncing?" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=300) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ๐Ÿ“„ License This model is licensed under the Apache License 2.0. ---