Update README.md
Browse files
README.md
CHANGED
@@ -10,12 +10,65 @@ language:
|
|
10 |
- en
|
11 |
---
|
12 |
|
13 |
-
#
|
14 |
|
15 |
-
-
|
16 |
-
- **License:** apache-2.0
|
17 |
-
- **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
10 |
- en
|
11 |
---
|
12 |
|
13 |
+
# 🚀 Fine-tuned Gemma 3 Model (4B, 4-bit) by Webkul
|
14 |
|
15 |
+
This repository contains a fine-tuned version of [Unsloth's](https://github.com/unslothai/unsloth) `gemma-3-4b-it` model, optimized for lightweight 4-bit inference and instruction tuning using Hugging Face's [TRL](https://github.com/huggingface/trl) and Unsloth's speed-optimized framework.
|
|
|
|
|
16 |
|
17 |
+
---
|
18 |
+
|
19 |
+
## 🔧 Model Details
|
20 |
+
|
21 |
+
- **Base Model:** [`unsloth/gemma-3-4b-it-unsloth-bnb-4bit`](https://huggingface.co/unsloth/gemma-3-4b-it-unsloth-bnb-4bit)
|
22 |
+
- **Fine-tuned By:** [Webkul](https://webkul.com)
|
23 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
24 |
+
- **Language:** English (`en`)
|
25 |
+
- **Model Size:** 4B parameters (4-bit quantized)
|
26 |
+
- **Frameworks Used:** Unsloth, Hugging Face Transformers, TRL
|
27 |
+
|
28 |
+
---
|
29 |
+
|
30 |
+
## 📚 Fine-tuning Dataset
|
31 |
+
|
32 |
+
This model was fine-tuned on unopim dev documentation available at [https://devdocs.unopim.com/](https://devdocs.unopim.com/), focusing on structured software documentation and developer support content.
|
33 |
+
|
34 |
+
---
|
35 |
+
|
36 |
+
## 💡 Intended Use
|
37 |
+
|
38 |
+
- Conversational AI assistants trained on UnoPIM developer docs
|
39 |
+
- API documentation question answering
|
40 |
+
- Developer tools and chatbot integrations
|
41 |
+
- Contextual helpdesk or onboarding bots for UnoPIM products
|
42 |
+
|
43 |
+
---
|
44 |
+
|
45 |
+
## 🧪 How to Use
|
46 |
+
|
47 |
+
You can use this model with the Hugging Face `transformers` library:
|
48 |
+
|
49 |
+
```python
|
50 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
51 |
+
|
52 |
+
model_name = "webkul/gemma-3-4b-it-unopim-docs"
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
55 |
+
|
56 |
+
input_text = "How do I integrate the UnoPIM API for product syncing?"
|
57 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
58 |
+
outputs = model.generate(**inputs, max_new_tokens=300)
|
59 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
60 |
+
```
|
61 |
+
|
62 |
+
⚡ Performance & Efficiency
|
63 |
+
Thanks to Unsloth's optimizations, this model trains and runs inference 2x faster with lower memory requirements via 4-bit quantization—ideal for local and edge deployment scenarios.
|
64 |
+
|
65 |
+
❤️ Acknowledgments
|
66 |
+
<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>
|
67 |
+
|
68 |
+
Special thanks to the Unsloth team and Hugging Face for enabling fast, low-resource fine-tuning of large language models.
|
69 |
+
|
70 |
+
📄 License
|
71 |
+
This model is licensed under the Apache License 2.0.
|
72 |
+
|
73 |
+
---
|
74 |
|
|