himanshu007 commited on
Commit
a082a3d
·
verified ·
1 Parent(s): e984759

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -6
README.md CHANGED
@@ -10,12 +10,65 @@ language:
10
  - en
11
  ---
12
 
13
- # Uploaded finetuned model
14
 
15
- - **Developed by:** webkul
16
- - **License:** apache-2.0
17
- - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit
18
 
19
- This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
10
  - en
11
  ---
12
 
13
+ # 🚀 Fine-tuned Gemma 3 Model (4B, 4-bit) by Webkul
14
 
15
+ This repository contains a fine-tuned version of [Unsloth's](https://github.com/unslothai/unsloth) `gemma-3-4b-it` model, optimized for lightweight 4-bit inference and instruction tuning using Hugging Face's [TRL](https://github.com/huggingface/trl) and Unsloth's speed-optimized framework.
 
 
16
 
17
+ ---
18
+
19
+ ## 🔧 Model Details
20
+
21
+ - **Base Model:** [`unsloth/gemma-3-4b-it-unsloth-bnb-4bit`](https://huggingface.co/unsloth/gemma-3-4b-it-unsloth-bnb-4bit)
22
+ - **Fine-tuned By:** [Webkul](https://webkul.com)
23
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
24
+ - **Language:** English (`en`)
25
+ - **Model Size:** 4B parameters (4-bit quantized)
26
+ - **Frameworks Used:** Unsloth, Hugging Face Transformers, TRL
27
+
28
+ ---
29
+
30
+ ## 📚 Fine-tuning Dataset
31
+
32
+ This model was fine-tuned on unopim dev documentation available at [https://devdocs.unopim.com/](https://devdocs.unopim.com/), focusing on structured software documentation and developer support content.
33
+
34
+ ---
35
+
36
+ ## 💡 Intended Use
37
+
38
+ - Conversational AI assistants trained on UnoPIM developer docs
39
+ - API documentation question answering
40
+ - Developer tools and chatbot integrations
41
+ - Contextual helpdesk or onboarding bots for UnoPIM products
42
+
43
+ ---
44
+
45
+ ## 🧪 How to Use
46
+
47
+ You can use this model with the Hugging Face `transformers` library:
48
+
49
+ ```python
50
+ from transformers import AutoTokenizer, AutoModelForCausalLM
51
+
52
+ model_name = "webkul/gemma-3-4b-it-unopim-docs"
53
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
54
+ model = AutoModelForCausalLM.from_pretrained(model_name)
55
+
56
+ input_text = "How do I integrate the UnoPIM API for product syncing?"
57
+ inputs = tokenizer(input_text, return_tensors="pt")
58
+ outputs = model.generate(**inputs, max_new_tokens=300)
59
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
60
+ ```
61
+
62
+ ⚡ Performance & Efficiency
63
+ Thanks to Unsloth's optimizations, this model trains and runs inference 2x faster with lower memory requirements via 4-bit quantization—ideal for local and edge deployment scenarios.
64
+
65
+ ❤️ Acknowledgments
66
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>
67
+
68
+ Special thanks to the Unsloth team and Hugging Face for enabling fast, low-resource fine-tuning of large language models.
69
+
70
+ 📄 License
71
+ This model is licensed under the Apache License 2.0.
72
+
73
+ ---
74