--- language: - ja base_model: - webbigdata/VoiceCore tags: - tts - vllm --- # VoiceCore_smoothquant [webbigdata/VoiceCore](https://huggingface.co/webbigdata/VoiceCore)をvLLMで高速に動かすためにsmoothquant(W8A8)量子化したモデルです 詳細は[webbigdata/VoiceCore](https://huggingface.co/webbigdata/VoiceCore)のモデルカードを御覧ください This is a model quantized using smoothquant (W8A8) to run [webbigdata/VoiceCore](https://huggingface.co/webbigdata/VoiceCore) at high speed using vLLM. See the [webbigdata/VoiceCore](https://huggingface.co/webbigdata/VoiceCore) model card for details. ## Install/Setup [vLLMはAMDのGPUでも動作する](https://docs.vllm.ai/en/v0.6.5/getting_started/amd-installation.html)そうですがチェックは出来ていません。 Mac(CPU)でも動くようですが、[gguf版](https://huggingface.co/webbigdata/VoiceCore_gguf)を使った方が早いかもしれません vLLM seems to work with [AMD GPUs](https://docs.vllm.ai/en/v0.6.5/getting_started/amd-installation.html), but I haven't checked. It also seems to work with Mac (CPU), but [gguf version](https://huggingface.co/webbigdata/VoiceCore_gguf) seems to be better. 以下はLinuxのNvidia GPU版のセットアップ手順です Below are the setup instructions for the Nvidia GPU version of Linux. ``` python3 -m venv VL source VL/bin/activate pip install vllm pip install snac pip install numpy==1.26.4 ``` ## Sample script ``` import torch import scipy.io.wavfile as wavfile from transformers import AutoTokenizer from snac import SNAC from vllm import LLM, SamplingParams QUANTIZED_MODEL_PATH = "webbigdata/VoiceCore_smoothquant" prompts = [ "テストです", "スムーズクアント、問題なく動いてますかね?圧縮しすぎると別人の声になっちゃう事があるんですよね、ふふふ" ] chosen_voice = "matsukaze_male[neutral]" print("Loading tokenizer and preparing inputs...") tokenizer = AutoTokenizer.from_pretrained(QUANTIZED_MODEL_PATH) prompts_ = [(f"{chosen_voice}: " + p) if chosen_voice else p for p in prompts] start_token, end_tokens = [128259], [128009, 128260, 128261] all_prompt_token_ids = [] for prompt in prompts_: input_ids = tokenizer.encode(prompt) final_token_ids = start_token + input_ids + end_tokens all_prompt_token_ids.append(final_token_ids) print("Inputs prepared successfully.") print(f"Loading SmoothQuant model with vLLM from: {QUANTIZED_MODEL_PATH}") llm = LLM( model=QUANTIZED_MODEL_PATH, trust_remote_code=True, max_model_len=10000, # メモリ不足になる場合は減らしてください f you run out of memory, reduce it. #gpu_memory_utilization=0.9 # 「最大GPUメモリの何割を使うか?」適宜調整してください "What percentage of the maximum GPU memory should be used?" Adjust accordingly. ) sampling_params = SamplingParams( temperature=0.6, top_p=0.90, repetition_penalty=1.1, max_tokens=8192, # max_tokens + input_prompt <= max_model_len stop_token_ids=[128258] ) print("vLLM model loaded.") print("Generating audio tokens with vLLM...") outputs = llm.generate(prompt_token_ids=all_prompt_token_ids, sampling_params=sampling_params) print("Generation complete.") # GPUの方が早いがvllmが大きくメモリ確保していると失敗するため GPU is faster, but if vllm allocates a lot of memory it will fail to run. print("Loading SNAC decoder to CPU...") snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz") snac_model.to("cpu") print("SNAC model loaded.") print("Decoding tokens to audio...") audio_start_token = 128257 def redistribute_codes(code_list): layer_1, layer_2, layer_3 = [], [], [] for i in range(len(code_list) // 7): layer_1.append(code_list[7*i]) layer_2.append(code_list[7*i+1] - 4096) layer_3.append(code_list[7*i+2] - (2*4096)) layer_3.append(code_list[7*i+3] - (3*4096)) layer_2.append(code_list[7*i+4] - (4*4096)) layer_3.append(code_list[7*i+5] - (5*4096)) layer_3.append(code_list[7*i+6] - (6*4096)) codes = [torch.tensor(layer).unsqueeze(0) for layer in [layer_1, layer_2, layer_3]] audio_hat = snac_model.decode(codes) return audio_hat code_lists = [] for output in outputs: generated_token_ids = output.outputs[0].token_ids generated_tensor = torch.tensor([generated_token_ids]) token_indices = (generated_tensor == audio_start_token).nonzero(as_tuple=True) if len(token_indices[1]) > 0: cropped_tensor = generated_tensor[:, token_indices[1][-1].item() + 1:] else: cropped_tensor = generated_tensor masked_row = cropped_tensor.squeeze() row_length = masked_row.size(0) new_length = (row_length // 7) * 7 trimmed_row = masked_row[:new_length] code_list = [t.item() - 128266 for t in trimmed_row] code_lists.append(code_list) for i, code_list in enumerate(code_lists): if i >= len(prompts): break print(f"Processing audio for prompt: '{prompts[i]}'") samples = redistribute_codes(code_list) sample_np = samples.detach().squeeze().numpy() safe_prompt = "".join(c for c in prompts[i] if c.isalnum() or c in (' ', '_')).rstrip() filename = f"audio_final_{i}_{safe_prompt[:20].replace(' ', '_')}.wav" wavfile.write(filename, 24000, sample_np) print(f"Saved audio to: {filename}") ```