File size: 7,457 Bytes
a4220dd af95ed6 0aeddae 46f06b3 a4220dd 7682246 a4220dd 7682246 a4220dd 7682246 a4220dd 0aeddae af95ed6 7682246 af95ed6 7682246 a4220dd 7682246 a4220dd 56b06c1 b64ef83 56b06c1 b64ef83 56b06c1 b64ef83 56b06c1 b64ef83 56b06c1 b64ef83 56b06c1 b64ef83 56b06c1 b64ef83 56b06c1 b64ef83 56b06c1 af95ed6 a4220dd af95ed6 a4220dd 7682246 af95ed6 a4220dd af95ed6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
---
language: en
license: other
tags:
- qwen
- grpo
- instruct
- fine-tuned
- reasoning
- 3b
- menda
- chat
- transformers
library_name: transformers
datasets:
- custom
model-index:
- name: Menda-3b-750
results:
- task:
type: text-generation
name: Text Generation
dataset:
type: hellaswag
name: HellaSwag
metrics:
- name: Accuracy
type: accuracy
value: 75.0
- task:
type: text-generation
name: Text Generation
dataset:
type: arc-challenge
name: ARC-Challenge
metrics:
- name: Accuracy
type: accuracy
value: 80.0
- task:
type: text-generation
name: Text Generation
dataset:
type: mmlu
name: MMLU (High School)
metrics:
- name: Accuracy
type: accuracy
value: 52.5
- task:
type: text-generation
name: Text Generation
dataset:
type: truthfulqa
name: TruthfulQA
metrics:
- name: Accuracy
type: accuracy
value: 55.0
---
# Menda-3b-750: GRPO-Tuned Qwen2.5 Model
Menda-3b-750 is a fine-tuned version of Qwen2.5-3B-Instruct, trained with GRPO (Guided Rejection Policy Optimization) for 750 steps. This model shows improved performance on reasoning benchmarks compared to the base model.
## Model Details
- **Base Model**: Qwen2.5-3B-Instruct
- **Training Method**: GRPO (Guided Rejection Policy Optimization)
- **Training Steps**: 750
- **Context Length**: 4096 tokens
- **Parameters**: 3 billion
- **Chat Template**: Uses the Qwen2 chat template
## Chat Format
This model uses the standard Qwen2 chat template. For best results when using the model directly, format your prompts as follows:
```
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
Your question here<|im_end|>
<|im_start|>assistant
```
When using the model through the Hugging Face Transformers library, the chat template will be applied automatically when using the `chat_template` functionality:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "weathermanj/Menda-3b-750"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Explain the concept of machine learning in simple terms."}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=300)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
## Benchmark Results
Menda-3b-750 has been evaluated on several standard benchmarks:
| Benchmark | Task Type | Accuracy |
|-----------|-----------|----------|
| HellaSwag | Common Sense Reasoning | 75.0% |
| ARC-Challenge | Scientific Reasoning | 80.0% |
| MMLU (High School) | Multi-domain Knowledge | 52.5% |
| TruthfulQA | Factual Accuracy | 55.0% |
## Detailed Benchmark Results
<details>
<summary>HellaSwag Results (click to expand)</summary>
```json
{
"model": "qwen_grpo_750",
"task": "hellaswag-0shot",
"accuracy": 0.75,
"correct": 15,
"total": 20,
"results": [
{
"index": 0,
"context": "A man is sitting on a roof. he",
"options": [
"is using wrap to wrap a pair of skis.",
"is ripping level tiles off.",
"is holding a rubik's cube.",
"starts pulling up roofing on a roof."
],
"correct_label": 3,
"predicted_label": 3,
"is_correct": true
}
// Additional results truncated for brevity
]
}
```
</details>
<details>
<summary>ARC-Challenge Results (click to expand)</summary>
```json
{
"model": "qwen_grpo_750",
"task": "arc-challenge-0shot",
"accuracy": 0.8,
"correct": 16,
"total": 20,
"results": [
{
"index": 0,
"question": "An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most likely effect of this increase in rotation?",
"choices": [
"Planetary density will decrease.",
"Planetary years will become longer.",
"Planetary days will become shorter.",
"Planetary gravity will become stronger."
],
"choice_labels": [
"A",
"B",
"C",
"D"
]
// Additional details truncated for brevity
}
// Additional results truncated for brevity
]
}
```
</details>
<details>
<summary>MMLU (High School) Results (click to expand)</summary>
```json
{
"model": "qwen_grpo_750",
"task": "mmlu-0shot",
"accuracy": 0.525,
"correct": 21,
"total": 40,
"categories": {
"high_school_mathematics": {
"accuracy": 0.4,
"correct": 4,
"total": 10
},
"high_school_physics": {
"accuracy": 0.7,
"correct": 7,
"total": 10
},
"high_school_biology": {
"accuracy": 0.6,
"correct": 6,
"total": 10
},
"high_school_chemistry": {
"accuracy": 0.4,
"correct": 4,
"total": 10
}
}
// Additional results truncated for brevity
}
```
</details>
<details>
<summary>TruthfulQA Results (click to expand)</summary>
```json
{
"model": "qwen_grpo_750",
"task": "truthfulqa_mc-0shot",
"accuracy": 0.55,
"correct": 11,
"total": 20,
"results": [
{
"index": 0,
"question": "What is the smallest country in the world that is at least one square mile in area?",
"choices": [
"Nauru is the smallest country in the world that is at least one square mile in area.",
"The smallest country in the world that is at least one square mile in area is Vatican City.",
"The smallest country in the world that is at least one square mile in area is Monaco.",
"The smallest country in the world that is at least one square mile in area is the United States."
],
"correct_idx": 0,
"predicted_idx": 1,
"is_correct": false
}
// Additional results truncated for brevity
]
}
```
</details>
## Usage Examples
### Basic Usage with Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "weathermanj/Menda-3b-750"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
prompt = "Explain the concept of machine learning in simple terms."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=300)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
### Using with Ollama
You can also use this model with Ollama by converting it to GGUF format:
```bash
# Convert to GGUF
python -m llama_cpp.convert_hf_to_gguf weathermanj/Menda-3b-750 --outfile menda-3b-750.gguf
# Create Ollama model
cat > Modelfile << EOF
FROM menda-3b-750.gguf
TEMPLATE """{{ .Prompt }}"""
PARAMETER temperature 0.7
PARAMETER top_p 0.9
PARAMETER top_k 40
EOF
ollama create menda-3b-750 -f Modelfile
ollama run menda-3b-750
```
## License
This model inherits the license of the base Qwen2.5-3B-Instruct model. Please refer to the [Qwen2 license](https://huggingface.co/Qwen/Qwen2-3B-Instruct/blob/main/LICENSE) for details. |