wcyat commited on
Commit
c8a54dc
·
verified ·
1 Parent(s): 164de98

Model save

Browse files
Files changed (1) hide show
  1. README.md +91 -7
README.md CHANGED
@@ -4,6 +4,8 @@ license: apache-2.0
4
  base_model: hon9kon9ize/bert-base-cantonese
5
  tags:
6
  - generated_from_trainer
 
 
7
  model-index:
8
  - name: bert-suicide-detection-hk-new
9
  results: []
@@ -16,13 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [hon9kon9ize/bert-base-cantonese](https://huggingface.co/hon9kon9ize/bert-base-cantonese) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
- - eval_loss: 0.2776
20
- - eval_accuracy: 0.9583
21
- - eval_runtime: 3.8916
22
- - eval_samples_per_second: 37.002
23
- - eval_steps_per_second: 9.251
24
- - epoch: 3.5110
25
- - step: 1120
26
 
27
  ## Model description
28
 
@@ -49,6 +46,93 @@ The following hyperparameters were used during training:
49
  - lr_scheduler_type: linear
50
  - num_epochs: 5
51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  ### Framework versions
53
 
54
  - Transformers 4.47.1
 
4
  base_model: hon9kon9ize/bert-base-cantonese
5
  tags:
6
  - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
  model-index:
10
  - name: bert-suicide-detection-hk-new
11
  results: []
 
18
 
19
  This model is a fine-tuned version of [hon9kon9ize/bert-base-cantonese](https://huggingface.co/hon9kon9ize/bert-base-cantonese) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.3903
22
+ - Accuracy: 0.9333
 
 
 
 
 
23
 
24
  ## Model description
25
 
 
46
  - lr_scheduler_type: linear
47
  - num_epochs: 5
48
 
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
53
+ | 0.4227 | 0.0615 | 20 | 0.3869 | 0.8267 |
54
+ | 0.4575 | 0.1231 | 40 | 0.2748 | 0.8733 |
55
+ | 0.4332 | 0.1846 | 60 | 0.2883 | 0.84 |
56
+ | 0.2946 | 0.2462 | 80 | 0.2482 | 0.8867 |
57
+ | 0.2335 | 0.3077 | 100 | 0.2182 | 0.8933 |
58
+ | 0.2751 | 0.3692 | 120 | 0.2767 | 0.9 |
59
+ | 0.327 | 0.4308 | 140 | 0.6645 | 0.8067 |
60
+ | 0.2839 | 0.4923 | 160 | 0.2197 | 0.9333 |
61
+ | 0.2436 | 0.5538 | 180 | 0.2382 | 0.9267 |
62
+ | 0.2855 | 0.6154 | 200 | 0.4087 | 0.88 |
63
+ | 0.3372 | 0.6769 | 220 | 0.2596 | 0.94 |
64
+ | 0.1343 | 0.7385 | 240 | 0.7997 | 0.84 |
65
+ | 0.285 | 0.8 | 260 | 0.3252 | 0.9067 |
66
+ | 0.145 | 0.8615 | 280 | 0.8378 | 0.8333 |
67
+ | 0.2577 | 0.9231 | 300 | 0.4026 | 0.9067 |
68
+ | 0.4514 | 0.9846 | 320 | 0.4263 | 0.8867 |
69
+ | 0.245 | 1.0462 | 340 | 0.3208 | 0.9067 |
70
+ | 0.0017 | 1.1077 | 360 | 0.5023 | 0.8733 |
71
+ | 0.0176 | 1.1692 | 380 | 0.5177 | 0.88 |
72
+ | 0.1223 | 1.2308 | 400 | 0.6029 | 0.88 |
73
+ | 0.1639 | 1.2923 | 420 | 0.6401 | 0.88 |
74
+ | 0.1752 | 1.3538 | 440 | 0.4151 | 0.9 |
75
+ | 0.1417 | 1.4154 | 460 | 0.2314 | 0.9467 |
76
+ | 0.1784 | 1.4769 | 480 | 0.4026 | 0.9133 |
77
+ | 0.1671 | 1.5385 | 500 | 0.4188 | 0.9067 |
78
+ | 0.2027 | 1.6 | 520 | 0.2420 | 0.94 |
79
+ | 0.1009 | 1.6615 | 540 | 0.5572 | 0.86 |
80
+ | 0.1411 | 1.7231 | 560 | 0.5484 | 0.8867 |
81
+ | 0.078 | 1.7846 | 580 | 0.2864 | 0.9333 |
82
+ | 0.2094 | 1.8462 | 600 | 0.4784 | 0.9067 |
83
+ | 0.2487 | 1.9077 | 620 | 0.2854 | 0.9267 |
84
+ | 0.1476 | 1.9692 | 640 | 0.2096 | 0.9467 |
85
+ | 0.0111 | 2.0308 | 660 | 0.3278 | 0.9333 |
86
+ | 0.056 | 2.0923 | 680 | 0.3028 | 0.94 |
87
+ | 0.0025 | 2.1538 | 700 | 0.4313 | 0.9 |
88
+ | 0.0171 | 2.2154 | 720 | 0.3401 | 0.9333 |
89
+ | 0.2359 | 2.2769 | 740 | 0.3079 | 0.9467 |
90
+ | 0.0966 | 2.3385 | 760 | 0.4836 | 0.9 |
91
+ | 0.0375 | 2.4 | 780 | 0.5409 | 0.88 |
92
+ | 0.1249 | 2.4615 | 800 | 0.2857 | 0.9467 |
93
+ | 0.0408 | 2.5231 | 820 | 0.2854 | 0.94 |
94
+ | 0.0685 | 2.5846 | 840 | 0.3301 | 0.94 |
95
+ | 0.0676 | 2.6462 | 860 | 0.4170 | 0.9067 |
96
+ | 0.09 | 2.7077 | 880 | 0.4455 | 0.9067 |
97
+ | 0.0011 | 2.7692 | 900 | 0.3954 | 0.9267 |
98
+ | 0.0198 | 2.8308 | 920 | 0.4213 | 0.9133 |
99
+ | 0.1061 | 2.8923 | 940 | 0.3032 | 0.94 |
100
+ | 0.0003 | 2.9538 | 960 | 0.3759 | 0.92 |
101
+ | 0.0003 | 3.0154 | 980 | 0.3952 | 0.92 |
102
+ | 0.0037 | 3.0769 | 1000 | 0.4295 | 0.9133 |
103
+ | 0.0003 | 3.1385 | 1020 | 0.4906 | 0.9133 |
104
+ | 0.0003 | 3.2 | 1040 | 0.4890 | 0.9133 |
105
+ | 0.0642 | 3.2615 | 1060 | 0.3462 | 0.9333 |
106
+ | 0.0003 | 3.3231 | 1080 | 0.3094 | 0.9467 |
107
+ | 0.0003 | 3.3846 | 1100 | 0.3282 | 0.94 |
108
+ | 0.1037 | 3.4462 | 1120 | 0.3809 | 0.9333 |
109
+ | 0.0006 | 3.5077 | 1140 | 0.4448 | 0.9267 |
110
+ | 0.0942 | 3.5692 | 1160 | 0.6031 | 0.8867 |
111
+ | 0.0003 | 3.6308 | 1180 | 0.4964 | 0.8867 |
112
+ | 0.0007 | 3.6923 | 1200 | 0.5269 | 0.8867 |
113
+ | 0.0887 | 3.7538 | 1220 | 0.4914 | 0.8867 |
114
+ | 0.0003 | 3.8154 | 1240 | 0.3959 | 0.9267 |
115
+ | 0.0008 | 3.8769 | 1260 | 0.4240 | 0.9267 |
116
+ | 0.0003 | 3.9385 | 1280 | 0.4334 | 0.92 |
117
+ | 0.0003 | 4.0 | 1300 | 0.4242 | 0.9267 |
118
+ | 0.0002 | 4.0615 | 1320 | 0.4218 | 0.9267 |
119
+ | 0.0003 | 4.1231 | 1340 | 0.4187 | 0.9267 |
120
+ | 0.0002 | 4.1846 | 1360 | 0.4103 | 0.9267 |
121
+ | 0.0002 | 4.2462 | 1380 | 0.4091 | 0.9267 |
122
+ | 0.0002 | 4.3077 | 1400 | 0.4111 | 0.9267 |
123
+ | 0.0003 | 4.3692 | 1420 | 0.4092 | 0.9267 |
124
+ | 0.0003 | 4.4308 | 1440 | 0.3991 | 0.9333 |
125
+ | 0.0002 | 4.4923 | 1460 | 0.3991 | 0.9333 |
126
+ | 0.0002 | 4.5538 | 1480 | 0.3986 | 0.9333 |
127
+ | 0.0004 | 4.6154 | 1500 | 0.4055 | 0.9333 |
128
+ | 0.1421 | 4.6769 | 1520 | 0.4006 | 0.9333 |
129
+ | 0.0002 | 4.7385 | 1540 | 0.4030 | 0.9267 |
130
+ | 0.0002 | 4.8 | 1560 | 0.4034 | 0.9267 |
131
+ | 0.0628 | 4.8615 | 1580 | 0.3876 | 0.9333 |
132
+ | 0.0003 | 4.9231 | 1600 | 0.3880 | 0.9333 |
133
+ | 0.0003 | 4.9846 | 1620 | 0.3903 | 0.9333 |
134
+
135
+
136
  ### Framework versions
137
 
138
  - Transformers 4.47.1