Model save
Browse files
README.md
CHANGED
@@ -4,6 +4,8 @@ license: apache-2.0
|
|
4 |
base_model: hon9kon9ize/bert-base-cantonese
|
5 |
tags:
|
6 |
- generated_from_trainer
|
|
|
|
|
7 |
model-index:
|
8 |
- name: bert-suicide-detection-hk-new
|
9 |
results: []
|
@@ -16,13 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [hon9kon9ize/bert-base-cantonese](https://huggingface.co/hon9kon9ize/bert-base-cantonese) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
-
|
20 |
-
-
|
21 |
-
- eval_runtime: 3.8916
|
22 |
-
- eval_samples_per_second: 37.002
|
23 |
-
- eval_steps_per_second: 9.251
|
24 |
-
- epoch: 3.5110
|
25 |
-
- step: 1120
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -49,6 +46,93 @@ The following hyperparameters were used during training:
|
|
49 |
- lr_scheduler_type: linear
|
50 |
- num_epochs: 5
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
### Framework versions
|
53 |
|
54 |
- Transformers 4.47.1
|
|
|
4 |
base_model: hon9kon9ize/bert-base-cantonese
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
model-index:
|
10 |
- name: bert-suicide-detection-hk-new
|
11 |
results: []
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [hon9kon9ize/bert-base-cantonese](https://huggingface.co/hon9kon9ize/bert-base-cantonese) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.3903
|
22 |
+
- Accuracy: 0.9333
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
46 |
- lr_scheduler_type: linear
|
47 |
- num_epochs: 5
|
48 |
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
53 |
+
| 0.4227 | 0.0615 | 20 | 0.3869 | 0.8267 |
|
54 |
+
| 0.4575 | 0.1231 | 40 | 0.2748 | 0.8733 |
|
55 |
+
| 0.4332 | 0.1846 | 60 | 0.2883 | 0.84 |
|
56 |
+
| 0.2946 | 0.2462 | 80 | 0.2482 | 0.8867 |
|
57 |
+
| 0.2335 | 0.3077 | 100 | 0.2182 | 0.8933 |
|
58 |
+
| 0.2751 | 0.3692 | 120 | 0.2767 | 0.9 |
|
59 |
+
| 0.327 | 0.4308 | 140 | 0.6645 | 0.8067 |
|
60 |
+
| 0.2839 | 0.4923 | 160 | 0.2197 | 0.9333 |
|
61 |
+
| 0.2436 | 0.5538 | 180 | 0.2382 | 0.9267 |
|
62 |
+
| 0.2855 | 0.6154 | 200 | 0.4087 | 0.88 |
|
63 |
+
| 0.3372 | 0.6769 | 220 | 0.2596 | 0.94 |
|
64 |
+
| 0.1343 | 0.7385 | 240 | 0.7997 | 0.84 |
|
65 |
+
| 0.285 | 0.8 | 260 | 0.3252 | 0.9067 |
|
66 |
+
| 0.145 | 0.8615 | 280 | 0.8378 | 0.8333 |
|
67 |
+
| 0.2577 | 0.9231 | 300 | 0.4026 | 0.9067 |
|
68 |
+
| 0.4514 | 0.9846 | 320 | 0.4263 | 0.8867 |
|
69 |
+
| 0.245 | 1.0462 | 340 | 0.3208 | 0.9067 |
|
70 |
+
| 0.0017 | 1.1077 | 360 | 0.5023 | 0.8733 |
|
71 |
+
| 0.0176 | 1.1692 | 380 | 0.5177 | 0.88 |
|
72 |
+
| 0.1223 | 1.2308 | 400 | 0.6029 | 0.88 |
|
73 |
+
| 0.1639 | 1.2923 | 420 | 0.6401 | 0.88 |
|
74 |
+
| 0.1752 | 1.3538 | 440 | 0.4151 | 0.9 |
|
75 |
+
| 0.1417 | 1.4154 | 460 | 0.2314 | 0.9467 |
|
76 |
+
| 0.1784 | 1.4769 | 480 | 0.4026 | 0.9133 |
|
77 |
+
| 0.1671 | 1.5385 | 500 | 0.4188 | 0.9067 |
|
78 |
+
| 0.2027 | 1.6 | 520 | 0.2420 | 0.94 |
|
79 |
+
| 0.1009 | 1.6615 | 540 | 0.5572 | 0.86 |
|
80 |
+
| 0.1411 | 1.7231 | 560 | 0.5484 | 0.8867 |
|
81 |
+
| 0.078 | 1.7846 | 580 | 0.2864 | 0.9333 |
|
82 |
+
| 0.2094 | 1.8462 | 600 | 0.4784 | 0.9067 |
|
83 |
+
| 0.2487 | 1.9077 | 620 | 0.2854 | 0.9267 |
|
84 |
+
| 0.1476 | 1.9692 | 640 | 0.2096 | 0.9467 |
|
85 |
+
| 0.0111 | 2.0308 | 660 | 0.3278 | 0.9333 |
|
86 |
+
| 0.056 | 2.0923 | 680 | 0.3028 | 0.94 |
|
87 |
+
| 0.0025 | 2.1538 | 700 | 0.4313 | 0.9 |
|
88 |
+
| 0.0171 | 2.2154 | 720 | 0.3401 | 0.9333 |
|
89 |
+
| 0.2359 | 2.2769 | 740 | 0.3079 | 0.9467 |
|
90 |
+
| 0.0966 | 2.3385 | 760 | 0.4836 | 0.9 |
|
91 |
+
| 0.0375 | 2.4 | 780 | 0.5409 | 0.88 |
|
92 |
+
| 0.1249 | 2.4615 | 800 | 0.2857 | 0.9467 |
|
93 |
+
| 0.0408 | 2.5231 | 820 | 0.2854 | 0.94 |
|
94 |
+
| 0.0685 | 2.5846 | 840 | 0.3301 | 0.94 |
|
95 |
+
| 0.0676 | 2.6462 | 860 | 0.4170 | 0.9067 |
|
96 |
+
| 0.09 | 2.7077 | 880 | 0.4455 | 0.9067 |
|
97 |
+
| 0.0011 | 2.7692 | 900 | 0.3954 | 0.9267 |
|
98 |
+
| 0.0198 | 2.8308 | 920 | 0.4213 | 0.9133 |
|
99 |
+
| 0.1061 | 2.8923 | 940 | 0.3032 | 0.94 |
|
100 |
+
| 0.0003 | 2.9538 | 960 | 0.3759 | 0.92 |
|
101 |
+
| 0.0003 | 3.0154 | 980 | 0.3952 | 0.92 |
|
102 |
+
| 0.0037 | 3.0769 | 1000 | 0.4295 | 0.9133 |
|
103 |
+
| 0.0003 | 3.1385 | 1020 | 0.4906 | 0.9133 |
|
104 |
+
| 0.0003 | 3.2 | 1040 | 0.4890 | 0.9133 |
|
105 |
+
| 0.0642 | 3.2615 | 1060 | 0.3462 | 0.9333 |
|
106 |
+
| 0.0003 | 3.3231 | 1080 | 0.3094 | 0.9467 |
|
107 |
+
| 0.0003 | 3.3846 | 1100 | 0.3282 | 0.94 |
|
108 |
+
| 0.1037 | 3.4462 | 1120 | 0.3809 | 0.9333 |
|
109 |
+
| 0.0006 | 3.5077 | 1140 | 0.4448 | 0.9267 |
|
110 |
+
| 0.0942 | 3.5692 | 1160 | 0.6031 | 0.8867 |
|
111 |
+
| 0.0003 | 3.6308 | 1180 | 0.4964 | 0.8867 |
|
112 |
+
| 0.0007 | 3.6923 | 1200 | 0.5269 | 0.8867 |
|
113 |
+
| 0.0887 | 3.7538 | 1220 | 0.4914 | 0.8867 |
|
114 |
+
| 0.0003 | 3.8154 | 1240 | 0.3959 | 0.9267 |
|
115 |
+
| 0.0008 | 3.8769 | 1260 | 0.4240 | 0.9267 |
|
116 |
+
| 0.0003 | 3.9385 | 1280 | 0.4334 | 0.92 |
|
117 |
+
| 0.0003 | 4.0 | 1300 | 0.4242 | 0.9267 |
|
118 |
+
| 0.0002 | 4.0615 | 1320 | 0.4218 | 0.9267 |
|
119 |
+
| 0.0003 | 4.1231 | 1340 | 0.4187 | 0.9267 |
|
120 |
+
| 0.0002 | 4.1846 | 1360 | 0.4103 | 0.9267 |
|
121 |
+
| 0.0002 | 4.2462 | 1380 | 0.4091 | 0.9267 |
|
122 |
+
| 0.0002 | 4.3077 | 1400 | 0.4111 | 0.9267 |
|
123 |
+
| 0.0003 | 4.3692 | 1420 | 0.4092 | 0.9267 |
|
124 |
+
| 0.0003 | 4.4308 | 1440 | 0.3991 | 0.9333 |
|
125 |
+
| 0.0002 | 4.4923 | 1460 | 0.3991 | 0.9333 |
|
126 |
+
| 0.0002 | 4.5538 | 1480 | 0.3986 | 0.9333 |
|
127 |
+
| 0.0004 | 4.6154 | 1500 | 0.4055 | 0.9333 |
|
128 |
+
| 0.1421 | 4.6769 | 1520 | 0.4006 | 0.9333 |
|
129 |
+
| 0.0002 | 4.7385 | 1540 | 0.4030 | 0.9267 |
|
130 |
+
| 0.0002 | 4.8 | 1560 | 0.4034 | 0.9267 |
|
131 |
+
| 0.0628 | 4.8615 | 1580 | 0.3876 | 0.9333 |
|
132 |
+
| 0.0003 | 4.9231 | 1600 | 0.3880 | 0.9333 |
|
133 |
+
| 0.0003 | 4.9846 | 1620 | 0.3903 | 0.9333 |
|
134 |
+
|
135 |
+
|
136 |
### Framework versions
|
137 |
|
138 |
- Transformers 4.47.1
|