Upload encoder.py
Browse files- encoder.py +73 -70
encoder.py
CHANGED
@@ -6,13 +6,16 @@ from typing import List, Optional, Tuple, Union
|
|
6 |
import torch
|
7 |
from torch import Tensor, nn
|
8 |
|
9 |
-
try:
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
except Exception as err:
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
# from .utils import apply_masked_flash_attn, apply_rotary_pos_emb
|
18 |
|
@@ -35,59 +38,59 @@ def apply_rotary_pos_emb(
|
|
35 |
return (q * cos) + (rtt_half(q) * sin), (k * cos) + (rtt_half(k) * sin)
|
36 |
|
37 |
|
38 |
-
def apply_masked_flash_attn(
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
) -> Tensor:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
|
93 |
class StridingSubsampling(nn.Module):
|
@@ -266,17 +269,17 @@ class RotaryPositionMultiHeadAttention(MultiHeadAttention):
|
|
266 |
value.view(t, b, self.h * self.d_k).transpose(0, 1),
|
267 |
)
|
268 |
|
269 |
-
if not self.flash_attn:
|
270 |
-
|
271 |
-
|
272 |
-
else:
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
|
281 |
return out
|
282 |
|
|
|
6 |
import torch
|
7 |
from torch import Tensor, nn
|
8 |
|
9 |
+
# try:
|
10 |
+
# from flash_attn import flash_attn_func
|
11 |
|
12 |
+
# IMPORT_FLASH = True
|
13 |
+
# except Exception as err:
|
14 |
+
# IMPORT_FLASH = False
|
15 |
+
# IMPORT_FLASH_ERR = err
|
16 |
+
|
17 |
+
IMPORT_FLASH = False
|
18 |
+
IMPORT_FLASH_ERR = "Flash Attention not installed."
|
19 |
|
20 |
# from .utils import apply_masked_flash_attn, apply_rotary_pos_emb
|
21 |
|
|
|
38 |
return (q * cos) + (rtt_half(q) * sin), (k * cos) + (rtt_half(k) * sin)
|
39 |
|
40 |
|
41 |
+
# def apply_masked_flash_attn(
|
42 |
+
# q: Tensor,
|
43 |
+
# k: Tensor,
|
44 |
+
# v: Tensor,
|
45 |
+
# mask: Tensor,
|
46 |
+
# h: int,
|
47 |
+
# d_k: int,
|
48 |
+
# ) -> Tensor:
|
49 |
+
# """
|
50 |
+
# Applies Flash Attention with padding masks.
|
51 |
+
# """
|
52 |
+
|
53 |
+
# from einops import rearrange
|
54 |
+
# from flash_attn import flash_attn_varlen_func
|
55 |
+
# from flash_attn.bert_padding import pad_input, unpad_input
|
56 |
+
|
57 |
+
# pad_mask = ~mask[:, 0, :]
|
58 |
+
# b, t = pad_mask.shape
|
59 |
+
# q = q.view(b, t, h * d_k)
|
60 |
+
# k = k.view(b, t, h * d_k)
|
61 |
+
# v = v.view(b, t, h * d_k)
|
62 |
+
|
63 |
+
# q_unpad, indices_q, _, max_seqlen_q = unpad_input(q, pad_mask)[:4]
|
64 |
+
# q_unpad = rearrange(q_unpad, "nnz (h d) -> nnz h d", h=h)
|
65 |
+
|
66 |
+
# k_unpad = unpad_input(k, pad_mask)[0]
|
67 |
+
# k_unpad = rearrange(k_unpad, "nnz (h d) -> nnz h d", h=h)
|
68 |
+
|
69 |
+
# v_unpad = unpad_input(v, pad_mask)[0]
|
70 |
+
# v_unpad = rearrange(v_unpad, "nnz (h d) -> nnz h d", h=h)
|
71 |
+
|
72 |
+
# lengths_q = pad_mask.sum(1).to(torch.int32).to(q.device)
|
73 |
+
# cu_seqlens_q = F.pad(lengths_q.cumsum(0), (1, 0), value=0).to(torch.int32)
|
74 |
+
# max_seqlen_q = torch.max(lengths_q)
|
75 |
+
|
76 |
+
# output_unpad = flash_attn_varlen_func(
|
77 |
+
# q_unpad,
|
78 |
+
# k_unpad,
|
79 |
+
# v_unpad,
|
80 |
+
# cu_seqlens_q,
|
81 |
+
# cu_seqlens_q,
|
82 |
+
# max_seqlen_q,
|
83 |
+
# max_seqlen_q,
|
84 |
+
# )
|
85 |
+
|
86 |
+
# scores = pad_input(
|
87 |
+
# rearrange(output_unpad, "nnz h d -> nnz (h d)"),
|
88 |
+
# indices_q,
|
89 |
+
# b,
|
90 |
+
# t,
|
91 |
+
# )
|
92 |
+
|
93 |
+
# return scores
|
94 |
|
95 |
|
96 |
class StridingSubsampling(nn.Module):
|
|
|
269 |
value.view(t, b, self.h * self.d_k).transpose(0, 1),
|
270 |
)
|
271 |
|
272 |
+
# if not self.flash_attn:
|
273 |
+
scores = torch.matmul(q, k.transpose(-2, -1) / math.sqrt(self.d_k))
|
274 |
+
out = self.forward_attention(v, scores, mask)
|
275 |
+
# else:
|
276 |
+
# if mask is None:
|
277 |
+
# scores = flash_attn_func(q, k, v)
|
278 |
+
# else:
|
279 |
+
# scores = apply_masked_flash_attn(q, k, v, mask, self.h, self.d_k)
|
280 |
+
|
281 |
+
# scores = scores.view(b, -1, self.h * self.d_k)
|
282 |
+
# out = self.linear_out(scores)
|
283 |
|
284 |
return out
|
285 |
|