waterabbit114 commited on
Commit
43838b1
·
verified ·
1 Parent(s): 4ccece8

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: is completely right on this. carnildo’s comment is just a waste of space.
12
+ 176.12.107.140
13
+ - text: '" please do not vandalize pages, as you did with this edit to bella swan.
14
+ if you continue to do so, you will be blocked from editing. (talk) "'
15
+ - text: ipv6 mirc doesn't natively supports ipv6 protocols. it could be enabled
16
+ by adding a external dll plugin who will enable a special protocol for dns and
17
+ connecting to ipv6 servers.
18
+ - text: '" link thanks for fixing that disambiguation link on usher''s album )
19
+ flash; "'
20
+ - text: '|b-class-1= yes |b-class-2= yes |b-class-3= yes |b-class-4= yes |b-class-5=
21
+ yes'
22
+ pipeline_tag: text-classification
23
+ inference: false
24
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
25
+ model-index:
26
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
27
+ results:
28
+ - task:
29
+ type: text-classification
30
+ name: Text Classification
31
+ dataset:
32
+ name: Unknown
33
+ type: unknown
34
+ split: test
35
+ metrics:
36
+ - type: accuracy
37
+ value: 0.561665726640346
38
+ name: Accuracy
39
+ ---
40
+
41
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
42
+
43
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
44
+
45
+ The model has been trained using an efficient few-shot learning technique that involves:
46
+
47
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
48
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
49
+
50
+ ## Model Details
51
+
52
+ ### Model Description
53
+ - **Model Type:** SetFit
54
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
55
+ - **Classification head:** a OneVsRestClassifier instance
56
+ - **Maximum Sequence Length:** 512 tokens
57
+ <!-- - **Number of Classes:** Unknown -->
58
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
59
+ <!-- - **Language:** Unknown -->
60
+ <!-- - **License:** Unknown -->
61
+
62
+ ### Model Sources
63
+
64
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
65
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
66
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
67
+
68
+ ## Evaluation
69
+
70
+ ### Metrics
71
+ | Label | Accuracy |
72
+ |:--------|:---------|
73
+ | **all** | 0.5617 |
74
+
75
+ ## Uses
76
+
77
+ ### Direct Use for Inference
78
+
79
+ First install the SetFit library:
80
+
81
+ ```bash
82
+ pip install setfit
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+
87
+ ```python
88
+ from setfit import SetFitModel
89
+
90
+ # Download from the 🤗 Hub
91
+ model = SetFitModel.from_pretrained("waterabbit114/my-setfit-classifier")
92
+ # Run inference
93
+ preds = model("\" link thanks for fixing that disambiguation link on usher's album ) flash; \"")
94
+ ```
95
+
96
+ <!--
97
+ ### Downstream Use
98
+
99
+ *List how someone could finetune this model on their own dataset.*
100
+ -->
101
+
102
+ <!--
103
+ ### Out-of-Scope Use
104
+
105
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
106
+ -->
107
+
108
+ <!--
109
+ ## Bias, Risks and Limitations
110
+
111
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
112
+ -->
113
+
114
+ <!--
115
+ ### Recommendations
116
+
117
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
118
+ -->
119
+
120
+ ## Training Details
121
+
122
+ ### Training Set Metrics
123
+ | Training set | Min | Median | Max |
124
+ |:-------------|:----|:--------|:----|
125
+ | Word count | 3 | 44.6607 | 426 |
126
+
127
+ ### Training Hyperparameters
128
+ - batch_size: (1, 1)
129
+ - num_epochs: (1, 1)
130
+ - max_steps: -1
131
+ - sampling_strategy: oversampling
132
+ - num_iterations: 20
133
+ - body_learning_rate: (2e-05, 2e-05)
134
+ - head_learning_rate: 2e-05
135
+ - loss: CosineSimilarityLoss
136
+ - distance_metric: cosine_distance
137
+ - margin: 0.25
138
+ - end_to_end: False
139
+ - use_amp: False
140
+ - warmup_proportion: 0.1
141
+ - seed: 42
142
+ - eval_max_steps: -1
143
+ - load_best_model_at_end: False
144
+
145
+ ### Training Results
146
+ | Epoch | Step | Training Loss | Validation Loss |
147
+ |:------:|:----:|:-------------:|:---------------:|
148
+ | 0.0071 | 1 | 0.5784 | - |
149
+ | 0.0223 | 50 | 0.0217 | - |
150
+ | 0.0446 | 100 | 0.009 | - |
151
+ | 0.0670 | 150 | 0.0093 | - |
152
+ | 0.0893 | 200 | 0.0319 | - |
153
+ | 0.1116 | 250 | 0.0 | - |
154
+ | 0.1339 | 300 | 0.0007 | - |
155
+ | 0.1562 | 350 | 0.001 | - |
156
+ | 0.1786 | 400 | 0.0002 | - |
157
+ | 0.2009 | 450 | 0.0025 | - |
158
+ | 0.2232 | 500 | 0.0 | - |
159
+ | 0.2455 | 550 | 0.0002 | - |
160
+ | 0.2679 | 600 | 0.0015 | - |
161
+ | 0.2902 | 650 | 0.0002 | - |
162
+ | 0.3125 | 700 | 0.2228 | - |
163
+ | 0.3348 | 750 | 0.0 | - |
164
+ | 0.3571 | 800 | 0.0001 | - |
165
+ | 0.3795 | 850 | 0.0012 | - |
166
+ | 0.4018 | 900 | 0.0001 | - |
167
+ | 0.4241 | 950 | 0.0 | - |
168
+ | 0.4464 | 1000 | 0.0006 | - |
169
+ | 0.4688 | 1050 | 0.0 | - |
170
+ | 0.4911 | 1100 | 0.0001 | - |
171
+ | 0.5134 | 1150 | 0.0 | - |
172
+ | 0.5357 | 1200 | 0.0002 | - |
173
+ | 0.5580 | 1250 | 0.0001 | - |
174
+ | 0.5804 | 1300 | 0.0 | - |
175
+ | 0.6027 | 1350 | 0.0089 | - |
176
+ | 0.625 | 1400 | 0.0 | - |
177
+ | 0.6473 | 1450 | 0.0001 | - |
178
+ | 0.6696 | 1500 | 0.0 | - |
179
+ | 0.6920 | 1550 | 0.0003 | - |
180
+ | 0.7143 | 1600 | 0.0003 | - |
181
+ | 0.7366 | 1650 | 0.0001 | - |
182
+ | 0.7589 | 1700 | 0.0001 | - |
183
+ | 0.7812 | 1750 | 0.0 | - |
184
+ | 0.8036 | 1800 | 0.0 | - |
185
+ | 0.8259 | 1850 | 0.0 | - |
186
+ | 0.8482 | 1900 | 0.0002 | - |
187
+ | 0.8705 | 1950 | 0.0 | - |
188
+ | 0.8929 | 2000 | 0.0038 | - |
189
+ | 0.9152 | 2050 | 0.0 | - |
190
+ | 0.9375 | 2100 | 0.0001 | - |
191
+ | 0.9598 | 2150 | 0.0185 | - |
192
+ | 0.9821 | 2200 | 0.0003 | - |
193
+
194
+ ### Framework Versions
195
+ - Python: 3.11.7
196
+ - SetFit: 1.0.3
197
+ - Sentence Transformers: 2.2.2
198
+ - Transformers: 4.35.2
199
+ - PyTorch: 2.1.1+cu121
200
+ - Datasets: 2.14.5
201
+ - Tokenizers: 0.15.1
202
+
203
+ ## Citation
204
+
205
+ ### BibTeX
206
+ ```bibtex
207
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
208
+ doi = {10.48550/ARXIV.2209.11055},
209
+ url = {https://arxiv.org/abs/2209.11055},
210
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
211
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
212
+ title = {Efficient Few-Shot Learning Without Prompts},
213
+ publisher = {arXiv},
214
+ year = {2022},
215
+ copyright = {Creative Commons Attribution 4.0 International}
216
+ }
217
+ ```
218
+
219
+ <!--
220
+ ## Glossary
221
+
222
+ *Clearly define terms in order to be accessible across audiences.*
223
+ -->
224
+
225
+ <!--
226
+ ## Model Card Authors
227
+
228
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
229
+ -->
230
+
231
+ <!--
232
+ ## Model Card Contact
233
+
234
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
235
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:312863e0456022ed7d798119aefab31a8c89e664c9a6fd551a5f366f5522bd37
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b598fdbc4fbfc27cd088c94870380850acaef0b9101a5e058420dfce985fe450
3
+ size 39876
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff