Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,101 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
base_model:
|
7 |
+
- Qwen/Qwen2.5-VL-7B-Instruct
|
8 |
+
pipeline_tag: image-text-to-text
|
9 |
+
library_name: transformers
|
10 |
+
tags:
|
11 |
+
- text-generation-inference
|
12 |
+
---
|
13 |
+
|
14 |
+
# Qwen2.5-VL-7B-Instruct-gptqmodel-int8
|
15 |
+
|
16 |
+
It is a GPTQ-INT8 quantized [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) with [GPTQModel](https://github.com/ModelCloud/GPTQModel) toolkit.
|
17 |
+
|
18 |
+
## How to quantize
|
19 |
+
|
20 |
+
### Install
|
21 |
+
|
22 |
+
```bash
|
23 |
+
# Python 3.10.x or above
|
24 |
+
pip3 install -v "gptqmodel>=2.2.0" --no-build-isolation
|
25 |
+
|
26 |
+
```
|
27 |
+
|
28 |
+
### Quantize
|
29 |
+
|
30 |
+
```bash
|
31 |
+
python3 gptqmodel_quantize.py /path/to/Qwen2.5-VL-7B-Instruct/ /path/to/Qwen2.5-VL-7B-Instruct-gptqmodel-int8 8
|
32 |
+
|
33 |
+
```
|
34 |
+
|
35 |
+
```python
|
36 |
+
# gptqmodel_quantize.py
|
37 |
+
|
38 |
+
import fire
|
39 |
+
from datasets import load_dataset
|
40 |
+
|
41 |
+
from gptqmodel import GPTQModel, QuantizeConfig
|
42 |
+
from gptqmodel.models.definitions.base_qwen2_vl import BaseQwen2VLGPTQ
|
43 |
+
|
44 |
+
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
45 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
46 |
+
os.environ["PYTHONUTF8"]="1"
|
47 |
+
|
48 |
+
def format_qwen2_vl_dataset(image, assistant):
|
49 |
+
return [
|
50 |
+
{
|
51 |
+
"role": "user",
|
52 |
+
"content": [
|
53 |
+
{"type": "image", "image": image},
|
54 |
+
{"type": "text", "text": "generate a caption for this image"},
|
55 |
+
],
|
56 |
+
},
|
57 |
+
{"role": "assistant", "content": assistant},
|
58 |
+
]
|
59 |
+
|
60 |
+
|
61 |
+
def prepare_dataset(format_func, n_sample: int = 20) -> list[list[dict]]:
|
62 |
+
from datasets import load_dataset
|
63 |
+
|
64 |
+
dataset = load_dataset(
|
65 |
+
"laion/220k-GPT4Vision-captions-from-LIVIS", split=f"train[:{n_sample}]"
|
66 |
+
)
|
67 |
+
return [
|
68 |
+
format_func(sample["url"], sample["caption"])
|
69 |
+
for sample in dataset
|
70 |
+
]
|
71 |
+
|
72 |
+
|
73 |
+
def get_calib_dataset(model):
|
74 |
+
if isinstance(model, BaseQwen2VLGPTQ):
|
75 |
+
return prepare_dataset(format_qwen2_vl_dataset, n_sample=256)
|
76 |
+
raise NotImplementedError(f"Unsupported MODEL: {model.__class__}")
|
77 |
+
|
78 |
+
|
79 |
+
def quantize(model_path: str,
|
80 |
+
output_path: str,
|
81 |
+
bit: int):
|
82 |
+
quant_config = QuantizeConfig(bits=bit, group_size=128)
|
83 |
+
|
84 |
+
model = GPTQModel.load(model_path, quant_config)
|
85 |
+
calibration_dataset = get_calib_dataset(model)
|
86 |
+
|
87 |
+
# increase `batch_size` to match gpu/vram specs to speed up quantization
|
88 |
+
model.quantize(calibration_dataset, batch_size=8)
|
89 |
+
|
90 |
+
model.save(output_path)
|
91 |
+
|
92 |
+
# test post-quant inference
|
93 |
+
model = GPTQModel.load(output_path)
|
94 |
+
result = model.generate("Uncovering deep insights begins with")[0] # tokens
|
95 |
+
print(model.tokenizer.decode(result)) # string output
|
96 |
+
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
fire.Fire(quantize)
|
100 |
+
|
101 |
+
```
|