Added all files including vyro_workflows
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Imagine/Readme.md +147 -0
- Imagine/Workflows/Imaginev5-Workflow.json +2307 -0
- Imagine/Workflows/Imaginev5-ultra-Workflow.json +1433 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/checkpoint_pickle.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/cli_args.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/clip_model.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/clip_vision.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/conds.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/controlnet.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/diffusers_convert.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/diffusers_load.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/float.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/gligen.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/hooks.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/latent_formats.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/lora.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/lora_convert.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/model_base.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/model_detection.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/model_management.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/model_patcher.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/model_sampling.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/ops.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/options.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/patcher_extension.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/sample.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/sampler_helpers.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/samplers.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/sd.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/sd1_clip.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/sdxl_clip.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/supported_models.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/supported_models_base.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/utils.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/checkpoint_pickle.py +13 -0
- Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/cldm.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/control_types.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/dit_embedder.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/mmdit.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/cldm/cldm.py +433 -0
- Imagine/imagine-v5-ultra/comfy/cldm/control_types.py +10 -0
- Imagine/imagine-v5-ultra/comfy/cldm/dit_embedder.py +120 -0
- Imagine/imagine-v5-ultra/comfy/cldm/mmdit.py +81 -0
- Imagine/imagine-v5-ultra/comfy/cli_args.py +214 -0
- Imagine/imagine-v5-ultra/comfy/clip_config_bigg.json +23 -0
- Imagine/imagine-v5-ultra/comfy/clip_model.py +244 -0
- Imagine/imagine-v5-ultra/comfy/clip_vision.py +143 -0
- Imagine/imagine-v5-ultra/comfy/clip_vision_config_g.json +18 -0
- Imagine/imagine-v5-ultra/comfy/clip_vision_config_h.json +18 -0
- Imagine/imagine-v5-ultra/comfy/clip_vision_config_vitl.json +18 -0
Imagine/Readme.md
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: diffusers
|
5 |
+
---
|
6 |
+
# Imagine V5 Model Card
|
7 |
+
|
8 |
+

|
9 |
+
|
10 |
+
## Model Details
|
11 |
+
|
12 |
+
### Model Description
|
13 |
+
The Imagine V5, developed by Vyro AI, represents the pinnacle of photorealism in AI art generation. Specializing in photographs and portraits, V5 is known for its exceptional ability to create images that closely mimic reality.
|
14 |
+
|
15 |
+
V5 boasts an impressive ability to recognize a wide array of prompts and handle multiple subjects effortlessly. It's important to note that V5, with its vast capabilities, also demands significant computational resources and may exhibit slower processing times. This model is best suited for users with a good understanding of prompt composition, as it offers high-quality outputs for those who can navigate its complexities.
|
16 |
+
|
17 |
+
- **Developed by:** Vyro AI
|
18 |
+
- **Model type:** Generative text-to-image model
|
19 |
+
|
20 |
+
## Key Features
|
21 |
+
- Photorealistic Portraits and Landscapes: Specializes in creating highly realistic images.
|
22 |
+
- Large Dataset Training: Inherits a broad understanding of prompts from Stable Diffusion XL Model.
|
23 |
+
- Color Characteristics: Tends to produce slightly saturated imagery.
|
24 |
+
- Resource Intensive: Requires significant computational power.
|
25 |
+
## Ideal Uses
|
26 |
+
- Digital Art Creation: Ideal for artists seeking to create photorealistic portraits and landscapes.
|
27 |
+
- Graphic Design: Useful for designers who require high-fidelity images.
|
28 |
+
- Creative Experimentation: A valuable tool for exploring new artistic concepts, especially in realistic styles.
|
29 |
+
- Professional Projects: Suitable for advanced users in fields like advertising, where photorealism is key.
|
30 |
+
|
31 |
+
For more ways to use V5 and to explore its full potential, visit [ImagineV5 Use Cases](https://www.imagine.art/blogs/10-awesome-ways-to-use-imagine-s-new-v5-model)
|
32 |
+
## Limitations
|
33 |
+
- Factual Representations: Not intended for creating accurate depictions of real-world events or people.
|
34 |
+
- Sensitive Content: Must not be used for generating offensive or explicit material.
|
35 |
+
- Identity Misrepresentation and Deepfakes: Prohibited from creating deceptive images of real individuals.
|
36 |
+
- Legal and Ethical Compliance: Users must adhere to copyright, privacy, and ethical standards.
|
37 |
+
|
38 |
+
## Get Started with Using V5
|
39 |
+
Ready to dive into the world of AI-generated art with Imagine V5?
|
40 |
+
Begin your journey into photorealistic art creation today. Visit [imagine.art](https://www.imagine.art/) to access a user-friendly platform designed to help you harness the full capabilities of V5. Whether you're an experienced artist or just starting out, you'll find the tools and guidance you need to transform your artistic visions into stunning digital realities.
|
41 |
+
|
42 |
+
Explore detailed tutorials, creative tips, and a supportive community that will guide you through the exciting process of AI art generation. Start crafting your unique art pieces with Imagine V5 now at [imagine.art](https://www.imagine.art/)
|
43 |
+
|
44 |
+
# Setup and Usage
|
45 |
+
|
46 |
+
We offer two workflows:
|
47 |
+
- One for **Imagine V5**
|
48 |
+
- One for **Imagine V5 Ultra**
|
49 |
+
|
50 |
+
---
|
51 |
+
|
52 |
+
### Initial Setup
|
53 |
+
|
54 |
+
Clone this repository
|
55 |
+
```bash
|
56 |
+
git clone https://huggingface.co/vyroAI/ImagineV5
|
57 |
+
```
|
58 |
+
Create a conda environment
|
59 |
+
```bash
|
60 |
+
conda create -n imagineservices python==3.11 -y
|
61 |
+
```
|
62 |
+
Install the requirements
|
63 |
+
```bash
|
64 |
+
pip install -r requirements.txt
|
65 |
+
```
|
66 |
+
|
67 |
+
---
|
68 |
+
|
69 |
+
## Imagine V5 Setup
|
70 |
+
### Step 1: Navigate into the imagine-v5 folder
|
71 |
+
```bash
|
72 |
+
cd imagine-v5
|
73 |
+
```
|
74 |
+
|
75 |
+
### Step 2: Install PyTorch Nightly
|
76 |
+
```bash
|
77 |
+
pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128
|
78 |
+
```
|
79 |
+
|
80 |
+
### Step 3: Clone ComfyUI
|
81 |
+
```bash
|
82 |
+
git clone https://github.com/comfyanonymous/ComfyUI.git
|
83 |
+
```
|
84 |
+
|
85 |
+
### Step 4: Replace & Configure
|
86 |
+
- Replace the ComfyUI/comfy and ComfyUI/models folders with the ones provided in this repo in imagine-v5 folder.
|
87 |
+
- Copy the vyro_workflows folder into ComfyUI/custom_nodes/.
|
88 |
+
|
89 |
+
### Step 5: Run the Application
|
90 |
+
```bash
|
91 |
+
cd ComfyUI
|
92 |
+
python3.11 main.py
|
93 |
+
```
|
94 |
+
|
95 |
+
### Step 6: Load the Workflow
|
96 |
+
- Load the workflow in the ComfyUI interface.
|
97 |
+
- Use the following workflow file:
|
98 |
+
```text
|
99 |
+
https://huggingface.co/vyroAI/ImagineV5/blob/main/Imaginev5-Workflow.json
|
100 |
+
```
|
101 |
+
|
102 |
+
---
|
103 |
+
|
104 |
+
### Imagine V5 Ultra
|
105 |
+
|
106 |
+
## Imagine V5 Ultra Setup
|
107 |
+
### Step 1: Navigate into the imagine-v5-ultra folder
|
108 |
+
```bash
|
109 |
+
cd imagine-v5-ultra
|
110 |
+
```
|
111 |
+
### Step 2: Install PyTorch Nightly
|
112 |
+
```bash
|
113 |
+
pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128
|
114 |
+
```
|
115 |
+
|
116 |
+
### Step 3: Clone ComfyUI
|
117 |
+
```bash
|
118 |
+
git clone https://github.com/comfyanonymous/ComfyUI.git
|
119 |
+
```
|
120 |
+
|
121 |
+
### Step 4: Replace & Configure
|
122 |
+
- Replace the ComfyUI/comfy and ComfyUI/models folders with the ones provided in this repo in imgaine-v5-ultra folder.
|
123 |
+
- Copy the vyro_workflows folder into ComfyUI/custom_nodes/.
|
124 |
+
|
125 |
+
### Step 5: Run the Application
|
126 |
+
```bash
|
127 |
+
cd ComfyUI
|
128 |
+
python3.11 main.py
|
129 |
+
```
|
130 |
+
|
131 |
+
### Step 6: Load the Workflow
|
132 |
+
- Load the workflow in the ComfyUI interface.
|
133 |
+
- Use the following workflow file provided in Workflows folder:
|
134 |
+
|
135 |
+
```text
|
136 |
+
https://huggingface.co/vyroAI/ImagineV5/blob/main/Imaginev5-ultra-Workflow.json
|
137 |
+
```
|
138 |
+
⚠️ If you are facing any issues, make sure to use ComfyUI version: "0.3.27"
|
139 |
+
|
140 |
+
---
|
141 |
+
## Privacy Policy
|
142 |
+
For detailed information on data handling and privacy, refer to the [Imagine V5 Privacy Policy](https://drive.google.com/file/d/1odKfNRoJmwD3sg8dl4zGXjC65zzf8Ejm/view) document.
|
143 |
+
|
144 |
+
## Conclusion
|
145 |
+
Imagine V5 stands as a significant advancement in the realm of AI art generation, especially in the domain of photorealism. It presents a unique opportunity for artists, designers, and creatives to push the boundaries of digital art. While V5 demands a certain level of proficiency and computational resources, the quality of its output makes it a worthy tool for those seeking to explore the forefront of AI-generated art.
|
146 |
+
|
147 |
+
Explore the capabilities of Imagine V5 on various platforms including web browsers, Android, and iOS devices. Join the Imagine AI Art community, participate in the Affiliate Program, or delve into technical integrations via the APIs page. Embrace the fusion of art and technology with Imagine AI Art.
|
Imagine/Workflows/Imaginev5-Workflow.json
ADDED
@@ -0,0 +1,2307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"id": "a353eeec-1dc4-41d6-b5d3-846916cc12bb",
|
3 |
+
"revision": 0,
|
4 |
+
"last_node_id": 394,
|
5 |
+
"last_link_id": 1209,
|
6 |
+
"nodes": [
|
7 |
+
{
|
8 |
+
"id": 71,
|
9 |
+
"type": "Reroute",
|
10 |
+
"pos": [
|
11 |
+
-706,
|
12 |
+
-1007
|
13 |
+
],
|
14 |
+
"size": [
|
15 |
+
75,
|
16 |
+
26
|
17 |
+
],
|
18 |
+
"flags": {},
|
19 |
+
"order": 7,
|
20 |
+
"mode": 0,
|
21 |
+
"inputs": [
|
22 |
+
{
|
23 |
+
"name": "",
|
24 |
+
"type": "*",
|
25 |
+
"link": 209
|
26 |
+
}
|
27 |
+
],
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"name": "",
|
31 |
+
"type": "VAE",
|
32 |
+
"slot_index": 0,
|
33 |
+
"links": [
|
34 |
+
210
|
35 |
+
]
|
36 |
+
}
|
37 |
+
],
|
38 |
+
"properties": {
|
39 |
+
"showOutputText": false,
|
40 |
+
"horizontal": false
|
41 |
+
}
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"id": 147,
|
45 |
+
"type": "Reroute",
|
46 |
+
"pos": [
|
47 |
+
3679,
|
48 |
+
-85
|
49 |
+
],
|
50 |
+
"size": [
|
51 |
+
140.8000030517578,
|
52 |
+
26
|
53 |
+
],
|
54 |
+
"flags": {},
|
55 |
+
"order": 25,
|
56 |
+
"mode": 0,
|
57 |
+
"inputs": [
|
58 |
+
{
|
59 |
+
"name": "",
|
60 |
+
"type": "*",
|
61 |
+
"link": 435
|
62 |
+
}
|
63 |
+
],
|
64 |
+
"outputs": [
|
65 |
+
{
|
66 |
+
"name": "CONDITIONING",
|
67 |
+
"type": "CONDITIONING",
|
68 |
+
"slot_index": 0,
|
69 |
+
"links": [
|
70 |
+
439,
|
71 |
+
445
|
72 |
+
]
|
73 |
+
}
|
74 |
+
],
|
75 |
+
"properties": {
|
76 |
+
"showOutputText": true,
|
77 |
+
"horizontal": false
|
78 |
+
}
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"id": 148,
|
82 |
+
"type": "Reroute",
|
83 |
+
"pos": [
|
84 |
+
3681,
|
85 |
+
-44
|
86 |
+
],
|
87 |
+
"size": [
|
88 |
+
140.8000030517578,
|
89 |
+
26
|
90 |
+
],
|
91 |
+
"flags": {},
|
92 |
+
"order": 26,
|
93 |
+
"mode": 0,
|
94 |
+
"inputs": [
|
95 |
+
{
|
96 |
+
"name": "",
|
97 |
+
"type": "*",
|
98 |
+
"link": 436
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"outputs": [
|
102 |
+
{
|
103 |
+
"name": "CONDITIONING",
|
104 |
+
"type": "CONDITIONING",
|
105 |
+
"slot_index": 0,
|
106 |
+
"links": [
|
107 |
+
440,
|
108 |
+
446
|
109 |
+
]
|
110 |
+
}
|
111 |
+
],
|
112 |
+
"properties": {
|
113 |
+
"showOutputText": true,
|
114 |
+
"horizontal": false
|
115 |
+
}
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"id": 150,
|
119 |
+
"type": "Reroute",
|
120 |
+
"pos": [
|
121 |
+
3683.89599609375,
|
122 |
+
15.209931373596191
|
123 |
+
],
|
124 |
+
"size": [
|
125 |
+
75,
|
126 |
+
26
|
127 |
+
],
|
128 |
+
"flags": {},
|
129 |
+
"order": 22,
|
130 |
+
"mode": 0,
|
131 |
+
"inputs": [
|
132 |
+
{
|
133 |
+
"name": "",
|
134 |
+
"type": "*",
|
135 |
+
"widget": {
|
136 |
+
"name": "value"
|
137 |
+
},
|
138 |
+
"link": 442
|
139 |
+
}
|
140 |
+
],
|
141 |
+
"outputs": [
|
142 |
+
{
|
143 |
+
"name": "INT",
|
144 |
+
"type": "INT",
|
145 |
+
"slot_index": 0,
|
146 |
+
"links": [
|
147 |
+
443,
|
148 |
+
448
|
149 |
+
]
|
150 |
+
}
|
151 |
+
],
|
152 |
+
"properties": {
|
153 |
+
"showOutputText": true,
|
154 |
+
"horizontal": false
|
155 |
+
}
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"id": 63,
|
159 |
+
"type": "KSamplerAdvanced",
|
160 |
+
"pos": [
|
161 |
+
4274,
|
162 |
+
-795
|
163 |
+
],
|
164 |
+
"size": [
|
165 |
+
315,
|
166 |
+
518
|
167 |
+
],
|
168 |
+
"flags": {},
|
169 |
+
"order": 30,
|
170 |
+
"mode": 0,
|
171 |
+
"inputs": [
|
172 |
+
{
|
173 |
+
"name": "model",
|
174 |
+
"type": "MODEL",
|
175 |
+
"link": 734
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"name": "positive",
|
179 |
+
"type": "CONDITIONING",
|
180 |
+
"link": 211
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"name": "negative",
|
184 |
+
"type": "CONDITIONING",
|
185 |
+
"link": 212
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"name": "latent_image",
|
189 |
+
"type": "LATENT",
|
190 |
+
"link": 176
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"name": "noise_seed",
|
194 |
+
"type": "INT",
|
195 |
+
"widget": {
|
196 |
+
"name": "noise_seed"
|
197 |
+
},
|
198 |
+
"link": 430
|
199 |
+
}
|
200 |
+
],
|
201 |
+
"outputs": [
|
202 |
+
{
|
203 |
+
"name": "LATENT",
|
204 |
+
"shape": 3,
|
205 |
+
"type": "LATENT",
|
206 |
+
"slot_index": 0,
|
207 |
+
"links": [
|
208 |
+
441
|
209 |
+
]
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"properties": {
|
213 |
+
"cnr_id": "comfy-core",
|
214 |
+
"ver": "0.3.27",
|
215 |
+
"Node name for S&R": "KSamplerAdvanced"
|
216 |
+
},
|
217 |
+
"widgets_values": [
|
218 |
+
"enable",
|
219 |
+
95094378581456,
|
220 |
+
"randomize",
|
221 |
+
40,
|
222 |
+
7,
|
223 |
+
"dpmpp_3m_sde_gpu",
|
224 |
+
"simple",
|
225 |
+
20,
|
226 |
+
40,
|
227 |
+
"disable"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"id": 149,
|
232 |
+
"type": "Reroute",
|
233 |
+
"pos": [
|
234 |
+
3730,
|
235 |
+
-125
|
236 |
+
],
|
237 |
+
"size": [
|
238 |
+
82,
|
239 |
+
26
|
240 |
+
],
|
241 |
+
"flags": {},
|
242 |
+
"order": 24,
|
243 |
+
"mode": 0,
|
244 |
+
"inputs": [
|
245 |
+
{
|
246 |
+
"name": "",
|
247 |
+
"type": "*",
|
248 |
+
"link": 437
|
249 |
+
}
|
250 |
+
],
|
251 |
+
"outputs": [
|
252 |
+
{
|
253 |
+
"name": "MODEL",
|
254 |
+
"type": "MODEL",
|
255 |
+
"slot_index": 0,
|
256 |
+
"links": [
|
257 |
+
444,
|
258 |
+
734
|
259 |
+
]
|
260 |
+
}
|
261 |
+
],
|
262 |
+
"properties": {
|
263 |
+
"showOutputText": true,
|
264 |
+
"horizontal": false
|
265 |
+
}
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"id": 106,
|
269 |
+
"type": "Note",
|
270 |
+
"pos": [
|
271 |
+
-990,
|
272 |
+
-936
|
273 |
+
],
|
274 |
+
"size": [
|
275 |
+
210,
|
276 |
+
140.22134399414062
|
277 |
+
],
|
278 |
+
"flags": {},
|
279 |
+
"order": 0,
|
280 |
+
"mode": 0,
|
281 |
+
"inputs": [],
|
282 |
+
"outputs": [],
|
283 |
+
"properties": {
|
284 |
+
"text": ""
|
285 |
+
},
|
286 |
+
"widgets_values": [
|
287 |
+
"To simuulate image coming via API, right click on pipe input and click 'convert init_img to input'.\n(or face swap)\n\nDrag output from Vyro Image to String to init_img connector"
|
288 |
+
],
|
289 |
+
"color": "#432",
|
290 |
+
"bgcolor": "#653"
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"id": 103,
|
294 |
+
"type": "Vyro Image to String",
|
295 |
+
"pos": [
|
296 |
+
-932,
|
297 |
+
-711
|
298 |
+
],
|
299 |
+
"size": [
|
300 |
+
168,
|
301 |
+
26
|
302 |
+
],
|
303 |
+
"flags": {},
|
304 |
+
"order": 8,
|
305 |
+
"mode": 0,
|
306 |
+
"inputs": [
|
307 |
+
{
|
308 |
+
"name": "image",
|
309 |
+
"type": "IMAGE",
|
310 |
+
"link": 326
|
311 |
+
}
|
312 |
+
],
|
313 |
+
"outputs": [
|
314 |
+
{
|
315 |
+
"name": "string",
|
316 |
+
"shape": 3,
|
317 |
+
"type": "STRING",
|
318 |
+
"slot_index": 0,
|
319 |
+
"links": [
|
320 |
+
950
|
321 |
+
]
|
322 |
+
}
|
323 |
+
],
|
324 |
+
"properties": {
|
325 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
326 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
327 |
+
"Node name for S&R": "Vyro Image to String"
|
328 |
+
},
|
329 |
+
"widgets_values": []
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"id": 68,
|
333 |
+
"type": "Note",
|
334 |
+
"pos": [
|
335 |
+
111,
|
336 |
+
-1016
|
337 |
+
],
|
338 |
+
"size": [
|
339 |
+
228.4390106201172,
|
340 |
+
416.8971862792969
|
341 |
+
],
|
342 |
+
"flags": {},
|
343 |
+
"order": 1,
|
344 |
+
"mode": 0,
|
345 |
+
"inputs": [],
|
346 |
+
"outputs": [],
|
347 |
+
"properties": {
|
348 |
+
"text": ""
|
349 |
+
},
|
350 |
+
"widgets_values": [
|
351 |
+
"640 x 1536\n768 x 1344\n832 x 1216\n896 x 1152\n1024 x 1024\n1152 x 896\n1216 x 832\n1344 x 768\n1536 x 640\n\n\"3d render\",\n \"abstract art\",\n \"anime\",\n \"architecture\",\n \"cinematic\",\n \"conceptual art\",\n \"dark fantasy\",\n \"fantasy realism\",\n \"fashion\",\n \"graffiti\",\n \"illustration\",\n \"interior design\",\n \"logo\",\n \"painting\",\n \"photography:1.2\",\n \"portrait photography\",\n \"poster\",\n \"product:0.75\",\n \"sticker\",\n \"surrealism\",\n \"typography\",\n \"ukiyo-e\",\n \"vector design\",\n \"vibrant digital artwork:0.1\",\n \"watercolor\",\n \"wildlife photography\""
|
352 |
+
],
|
353 |
+
"color": "#432",
|
354 |
+
"bgcolor": "#653"
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"id": 2,
|
358 |
+
"type": "VAELoader",
|
359 |
+
"pos": [
|
360 |
+
-1066,
|
361 |
+
-1026
|
362 |
+
],
|
363 |
+
"size": [
|
364 |
+
315,
|
365 |
+
58
|
366 |
+
],
|
367 |
+
"flags": {},
|
368 |
+
"order": 2,
|
369 |
+
"mode": 0,
|
370 |
+
"inputs": [],
|
371 |
+
"outputs": [
|
372 |
+
{
|
373 |
+
"name": "VAE",
|
374 |
+
"shape": 3,
|
375 |
+
"type": "VAE",
|
376 |
+
"slot_index": 0,
|
377 |
+
"links": [
|
378 |
+
209
|
379 |
+
]
|
380 |
+
}
|
381 |
+
],
|
382 |
+
"properties": {
|
383 |
+
"cnr_id": "comfy-core",
|
384 |
+
"ver": "0.3.27",
|
385 |
+
"Node name for S&R": "VAELoader"
|
386 |
+
},
|
387 |
+
"widgets_values": [
|
388 |
+
"sdxl_vae.safetensors"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"id": 27,
|
393 |
+
"type": "Vyro Prompt Analyzer",
|
394 |
+
"pos": [
|
395 |
+
761,
|
396 |
+
-525
|
397 |
+
],
|
398 |
+
"size": [
|
399 |
+
315,
|
400 |
+
142
|
401 |
+
],
|
402 |
+
"flags": {},
|
403 |
+
"order": 12,
|
404 |
+
"mode": 0,
|
405 |
+
"inputs": [
|
406 |
+
{
|
407 |
+
"name": "vyro_params",
|
408 |
+
"type": "VYRO_PARAMS",
|
409 |
+
"link": 48
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"name": "styles",
|
413 |
+
"type": "LIST",
|
414 |
+
"link": 75
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"name": "prompt_tree",
|
418 |
+
"type": "DICT",
|
419 |
+
"link": 50
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"name": "classifier",
|
423 |
+
"type": "TRANSFORMER",
|
424 |
+
"link": 51
|
425 |
+
}
|
426 |
+
],
|
427 |
+
"outputs": [
|
428 |
+
{
|
429 |
+
"name": "vyro_params",
|
430 |
+
"shape": 3,
|
431 |
+
"type": "VYRO_PARAMS",
|
432 |
+
"slot_index": 0,
|
433 |
+
"links": [
|
434 |
+
147,
|
435 |
+
1205
|
436 |
+
]
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"name": "style",
|
440 |
+
"shape": 3,
|
441 |
+
"type": "STYLE",
|
442 |
+
"slot_index": 1,
|
443 |
+
"links": [
|
444 |
+
1147
|
445 |
+
]
|
446 |
+
}
|
447 |
+
],
|
448 |
+
"properties": {
|
449 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
450 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
451 |
+
"Node name for S&R": "Vyro Prompt Analyzer"
|
452 |
+
},
|
453 |
+
"widgets_values": [
|
454 |
+
"enabled",
|
455 |
+
"disabled"
|
456 |
+
]
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"id": 385,
|
460 |
+
"type": "Reroute",
|
461 |
+
"pos": [
|
462 |
+
643,
|
463 |
+
-895
|
464 |
+
],
|
465 |
+
"size": [
|
466 |
+
82,
|
467 |
+
26
|
468 |
+
],
|
469 |
+
"flags": {},
|
470 |
+
"order": 14,
|
471 |
+
"mode": 0,
|
472 |
+
"inputs": [
|
473 |
+
{
|
474 |
+
"name": "",
|
475 |
+
"type": "*",
|
476 |
+
"link": 1147
|
477 |
+
}
|
478 |
+
],
|
479 |
+
"outputs": [
|
480 |
+
{
|
481 |
+
"name": "STYLE",
|
482 |
+
"type": "STYLE",
|
483 |
+
"slot_index": 0,
|
484 |
+
"links": [
|
485 |
+
1152,
|
486 |
+
1153
|
487 |
+
]
|
488 |
+
}
|
489 |
+
],
|
490 |
+
"properties": {
|
491 |
+
"showOutputText": true,
|
492 |
+
"horizontal": false
|
493 |
+
}
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"id": 386,
|
497 |
+
"type": "Reroute",
|
498 |
+
"pos": [
|
499 |
+
620,
|
500 |
+
-1042
|
501 |
+
],
|
502 |
+
"size": [
|
503 |
+
75,
|
504 |
+
26
|
505 |
+
],
|
506 |
+
"flags": {},
|
507 |
+
"order": 9,
|
508 |
+
"mode": 0,
|
509 |
+
"inputs": [
|
510 |
+
{
|
511 |
+
"name": "",
|
512 |
+
"type": "*",
|
513 |
+
"link": 1149
|
514 |
+
}
|
515 |
+
],
|
516 |
+
"outputs": [
|
517 |
+
{
|
518 |
+
"name": "DICT",
|
519 |
+
"type": "DICT",
|
520 |
+
"slot_index": 0,
|
521 |
+
"links": [
|
522 |
+
1150,
|
523 |
+
1155
|
524 |
+
]
|
525 |
+
}
|
526 |
+
],
|
527 |
+
"properties": {
|
528 |
+
"showOutputText": true,
|
529 |
+
"horizontal": false
|
530 |
+
}
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"id": 387,
|
534 |
+
"type": "Reroute",
|
535 |
+
"pos": [
|
536 |
+
639,
|
537 |
+
-968
|
538 |
+
],
|
539 |
+
"size": [
|
540 |
+
75,
|
541 |
+
26
|
542 |
+
],
|
543 |
+
"flags": {},
|
544 |
+
"order": 10,
|
545 |
+
"mode": 0,
|
546 |
+
"inputs": [
|
547 |
+
{
|
548 |
+
"name": "",
|
549 |
+
"type": "*",
|
550 |
+
"link": 1148
|
551 |
+
}
|
552 |
+
],
|
553 |
+
"outputs": [
|
554 |
+
{
|
555 |
+
"name": "DICT",
|
556 |
+
"type": "DICT",
|
557 |
+
"slot_index": 0,
|
558 |
+
"links": [
|
559 |
+
1151,
|
560 |
+
1156
|
561 |
+
]
|
562 |
+
}
|
563 |
+
],
|
564 |
+
"properties": {
|
565 |
+
"showOutputText": true,
|
566 |
+
"horizontal": false
|
567 |
+
}
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"id": 384,
|
571 |
+
"type": "Vyro Oneflow Refiner Model Loader",
|
572 |
+
"pos": [
|
573 |
+
871,
|
574 |
+
-826
|
575 |
+
],
|
576 |
+
"size": [
|
577 |
+
330,
|
578 |
+
66
|
579 |
+
],
|
580 |
+
"flags": {},
|
581 |
+
"order": 17,
|
582 |
+
"mode": 0,
|
583 |
+
"inputs": [
|
584 |
+
{
|
585 |
+
"name": "style",
|
586 |
+
"type": "STYLE",
|
587 |
+
"link": 1153
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"name": "prompt_tree",
|
591 |
+
"type": "DICT",
|
592 |
+
"link": 1155
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"name": "model_config",
|
596 |
+
"type": "DICT",
|
597 |
+
"link": 1156
|
598 |
+
}
|
599 |
+
],
|
600 |
+
"outputs": [
|
601 |
+
{
|
602 |
+
"name": "refiner_model",
|
603 |
+
"shape": 3,
|
604 |
+
"type": "MODEL",
|
605 |
+
"slot_index": 0,
|
606 |
+
"links": [
|
607 |
+
1165
|
608 |
+
]
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"name": "refiner_clip",
|
612 |
+
"shape": 3,
|
613 |
+
"type": "CLIP",
|
614 |
+
"slot_index": 1,
|
615 |
+
"links": [
|
616 |
+
1158
|
617 |
+
]
|
618 |
+
}
|
619 |
+
],
|
620 |
+
"properties": {
|
621 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
622 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
623 |
+
"Node name for S&R": "Vyro Oneflow Refiner Model Loader"
|
624 |
+
},
|
625 |
+
"widgets_values": []
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"id": 57,
|
629 |
+
"type": "VAEDecode",
|
630 |
+
"pos": [
|
631 |
+
5441,
|
632 |
+
-641
|
633 |
+
],
|
634 |
+
"size": [
|
635 |
+
210,
|
636 |
+
46
|
637 |
+
],
|
638 |
+
"flags": {},
|
639 |
+
"order": 33,
|
640 |
+
"mode": 0,
|
641 |
+
"inputs": [
|
642 |
+
{
|
643 |
+
"name": "samples",
|
644 |
+
"type": "LATENT",
|
645 |
+
"link": 728
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"name": "vae",
|
649 |
+
"type": "VAE",
|
650 |
+
"link": 323
|
651 |
+
}
|
652 |
+
],
|
653 |
+
"outputs": [
|
654 |
+
{
|
655 |
+
"name": "IMAGE",
|
656 |
+
"shape": 3,
|
657 |
+
"type": "IMAGE",
|
658 |
+
"slot_index": 0,
|
659 |
+
"links": [
|
660 |
+
1142
|
661 |
+
]
|
662 |
+
}
|
663 |
+
],
|
664 |
+
"properties": {
|
665 |
+
"cnr_id": "comfy-core",
|
666 |
+
"ver": "0.3.27",
|
667 |
+
"Node name for S&R": "VAEDecode"
|
668 |
+
},
|
669 |
+
"widgets_values": []
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"id": 84,
|
673 |
+
"type": "PreviewImage",
|
674 |
+
"pos": [
|
675 |
+
5746,
|
676 |
+
-719
|
677 |
+
],
|
678 |
+
"size": [
|
679 |
+
511.7968444824219,
|
680 |
+
426.3374938964844
|
681 |
+
],
|
682 |
+
"flags": {},
|
683 |
+
"order": 34,
|
684 |
+
"mode": 0,
|
685 |
+
"inputs": [
|
686 |
+
{
|
687 |
+
"name": "images",
|
688 |
+
"type": "IMAGE",
|
689 |
+
"link": 1142
|
690 |
+
}
|
691 |
+
],
|
692 |
+
"outputs": [],
|
693 |
+
"properties": {
|
694 |
+
"cnr_id": "comfy-core",
|
695 |
+
"ver": "0.3.27",
|
696 |
+
"Node name for S&R": "PreviewImage"
|
697 |
+
},
|
698 |
+
"widgets_values": [
|
699 |
+
""
|
700 |
+
]
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"id": 145,
|
704 |
+
"type": "KSamplerAdvanced",
|
705 |
+
"pos": [
|
706 |
+
4694,
|
707 |
+
-293
|
708 |
+
],
|
709 |
+
"size": [
|
710 |
+
315,
|
711 |
+
518
|
712 |
+
],
|
713 |
+
"flags": {},
|
714 |
+
"order": 31,
|
715 |
+
"mode": 0,
|
716 |
+
"inputs": [
|
717 |
+
{
|
718 |
+
"name": "model",
|
719 |
+
"type": "MODEL",
|
720 |
+
"link": 732
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"name": "positive",
|
724 |
+
"type": "CONDITIONING",
|
725 |
+
"link": 439
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"name": "negative",
|
729 |
+
"type": "CONDITIONING",
|
730 |
+
"link": 440
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"name": "latent_image",
|
734 |
+
"type": "LATENT",
|
735 |
+
"link": 441
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"name": "noise_seed",
|
739 |
+
"type": "INT",
|
740 |
+
"widget": {
|
741 |
+
"name": "noise_seed"
|
742 |
+
},
|
743 |
+
"link": 443
|
744 |
+
}
|
745 |
+
],
|
746 |
+
"outputs": [
|
747 |
+
{
|
748 |
+
"name": "LATENT",
|
749 |
+
"shape": 3,
|
750 |
+
"type": "LATENT",
|
751 |
+
"slot_index": 0,
|
752 |
+
"links": [
|
753 |
+
447
|
754 |
+
]
|
755 |
+
}
|
756 |
+
],
|
757 |
+
"title": "Step1",
|
758 |
+
"properties": {
|
759 |
+
"cnr_id": "comfy-core",
|
760 |
+
"ver": "0.3.27",
|
761 |
+
"Node name for S&R": "KSamplerAdvanced"
|
762 |
+
},
|
763 |
+
"widgets_values": [
|
764 |
+
"enable",
|
765 |
+
1114398158696762,
|
766 |
+
"randomize",
|
767 |
+
30,
|
768 |
+
7,
|
769 |
+
"ddim",
|
770 |
+
"karras",
|
771 |
+
25,
|
772 |
+
27,
|
773 |
+
"enable"
|
774 |
+
]
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"id": 151,
|
778 |
+
"type": "KSamplerAdvanced",
|
779 |
+
"pos": [
|
780 |
+
5085,
|
781 |
+
-268
|
782 |
+
],
|
783 |
+
"size": [
|
784 |
+
315,
|
785 |
+
518
|
786 |
+
],
|
787 |
+
"flags": {},
|
788 |
+
"order": 32,
|
789 |
+
"mode": 0,
|
790 |
+
"inputs": [
|
791 |
+
{
|
792 |
+
"name": "model",
|
793 |
+
"type": "MODEL",
|
794 |
+
"link": 444
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"name": "positive",
|
798 |
+
"type": "CONDITIONING",
|
799 |
+
"link": 445
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"name": "negative",
|
803 |
+
"type": "CONDITIONING",
|
804 |
+
"link": 446
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"name": "latent_image",
|
808 |
+
"type": "LATENT",
|
809 |
+
"link": 447
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"name": "noise_seed",
|
813 |
+
"type": "INT",
|
814 |
+
"widget": {
|
815 |
+
"name": "noise_seed"
|
816 |
+
},
|
817 |
+
"link": 448
|
818 |
+
}
|
819 |
+
],
|
820 |
+
"outputs": [
|
821 |
+
{
|
822 |
+
"name": "LATENT",
|
823 |
+
"shape": 3,
|
824 |
+
"type": "LATENT",
|
825 |
+
"slot_index": 0,
|
826 |
+
"links": [
|
827 |
+
728
|
828 |
+
]
|
829 |
+
}
|
830 |
+
],
|
831 |
+
"title": "Step2",
|
832 |
+
"properties": {
|
833 |
+
"cnr_id": "comfy-core",
|
834 |
+
"ver": "0.3.27",
|
835 |
+
"Node name for S&R": "KSamplerAdvanced"
|
836 |
+
},
|
837 |
+
"widgets_values": [
|
838 |
+
"disable",
|
839 |
+
1089159239373161,
|
840 |
+
"randomize",
|
841 |
+
30,
|
842 |
+
7,
|
843 |
+
"ddim",
|
844 |
+
"karras",
|
845 |
+
27,
|
846 |
+
30,
|
847 |
+
"enable"
|
848 |
+
]
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"id": 254,
|
852 |
+
"type": "Reroute",
|
853 |
+
"pos": [
|
854 |
+
1837,
|
855 |
+
-1031
|
856 |
+
],
|
857 |
+
"size": [
|
858 |
+
82,
|
859 |
+
26
|
860 |
+
],
|
861 |
+
"flags": {},
|
862 |
+
"order": 19,
|
863 |
+
"mode": 0,
|
864 |
+
"inputs": [
|
865 |
+
{
|
866 |
+
"name": "",
|
867 |
+
"type": "*",
|
868 |
+
"link": 1164
|
869 |
+
}
|
870 |
+
],
|
871 |
+
"outputs": [
|
872 |
+
{
|
873 |
+
"name": "MODEL",
|
874 |
+
"type": "MODEL",
|
875 |
+
"slot_index": 0,
|
876 |
+
"links": [
|
877 |
+
1195
|
878 |
+
]
|
879 |
+
}
|
880 |
+
],
|
881 |
+
"properties": {
|
882 |
+
"showOutputText": true,
|
883 |
+
"horizontal": false
|
884 |
+
}
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"id": 28,
|
888 |
+
"type": "Vyro Prompt Encoder",
|
889 |
+
"pos": [
|
890 |
+
1908,
|
891 |
+
-959
|
892 |
+
],
|
893 |
+
"size": [
|
894 |
+
367.79998779296875,
|
895 |
+
118
|
896 |
+
],
|
897 |
+
"flags": {},
|
898 |
+
"order": 21,
|
899 |
+
"mode": 0,
|
900 |
+
"inputs": [
|
901 |
+
{
|
902 |
+
"name": "base_clip",
|
903 |
+
"type": "CLIP",
|
904 |
+
"link": 1144
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"name": "refiner_clip",
|
908 |
+
"type": "CLIP",
|
909 |
+
"link": 1158
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"name": "params",
|
913 |
+
"type": "VYRO_PARAMS",
|
914 |
+
"link": 1205
|
915 |
+
}
|
916 |
+
],
|
917 |
+
"outputs": [
|
918 |
+
{
|
919 |
+
"name": "base_positive",
|
920 |
+
"shape": 3,
|
921 |
+
"type": "CONDITIONING",
|
922 |
+
"slot_index": 0,
|
923 |
+
"links": [
|
924 |
+
1166
|
925 |
+
]
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"name": "base_negative",
|
929 |
+
"shape": 3,
|
930 |
+
"type": "CONDITIONING",
|
931 |
+
"slot_index": 1,
|
932 |
+
"links": [
|
933 |
+
1167
|
934 |
+
]
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"name": "refiner_positive",
|
938 |
+
"shape": 3,
|
939 |
+
"type": "CONDITIONING",
|
940 |
+
"slot_index": 2,
|
941 |
+
"links": [
|
942 |
+
211,
|
943 |
+
435
|
944 |
+
]
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"name": "refiner_negative",
|
948 |
+
"shape": 3,
|
949 |
+
"type": "CONDITIONING",
|
950 |
+
"slot_index": 3,
|
951 |
+
"links": [
|
952 |
+
212,
|
953 |
+
436
|
954 |
+
]
|
955 |
+
}
|
956 |
+
],
|
957 |
+
"properties": {
|
958 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
959 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
960 |
+
"Node name for S&R": "Vyro Prompt Encoder"
|
961 |
+
},
|
962 |
+
"widgets_values": [
|
963 |
+
0
|
964 |
+
]
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"id": 55,
|
968 |
+
"type": "Reroute",
|
969 |
+
"pos": [
|
970 |
+
2227,
|
971 |
+
-688
|
972 |
+
],
|
973 |
+
"size": [
|
974 |
+
75,
|
975 |
+
26
|
976 |
+
],
|
977 |
+
"flags": {},
|
978 |
+
"order": 13,
|
979 |
+
"mode": 0,
|
980 |
+
"inputs": [
|
981 |
+
{
|
982 |
+
"name": "",
|
983 |
+
"type": "*",
|
984 |
+
"link": 147
|
985 |
+
}
|
986 |
+
],
|
987 |
+
"outputs": [
|
988 |
+
{
|
989 |
+
"name": "",
|
990 |
+
"type": "VYRO_PARAMS",
|
991 |
+
"slot_index": 0,
|
992 |
+
"links": [
|
993 |
+
624
|
994 |
+
]
|
995 |
+
}
|
996 |
+
],
|
997 |
+
"properties": {
|
998 |
+
"showOutputText": false,
|
999 |
+
"horizontal": false
|
1000 |
+
}
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"id": 135,
|
1004 |
+
"type": "Vyro Mode Filter",
|
1005 |
+
"pos": [
|
1006 |
+
2738,
|
1007 |
+
-899
|
1008 |
+
],
|
1009 |
+
"size": [
|
1010 |
+
315,
|
1011 |
+
250
|
1012 |
+
],
|
1013 |
+
"flags": {},
|
1014 |
+
"order": 15,
|
1015 |
+
"mode": 0,
|
1016 |
+
"inputs": [
|
1017 |
+
{
|
1018 |
+
"name": "vyro_params",
|
1019 |
+
"type": "VYRO_PARAMS",
|
1020 |
+
"link": 624
|
1021 |
+
}
|
1022 |
+
],
|
1023 |
+
"outputs": [
|
1024 |
+
{
|
1025 |
+
"name": "vyro_params",
|
1026 |
+
"shape": 3,
|
1027 |
+
"type": "VYRO_PARAMS",
|
1028 |
+
"slot_index": 0,
|
1029 |
+
"links": [
|
1030 |
+
429
|
1031 |
+
]
|
1032 |
+
}
|
1033 |
+
],
|
1034 |
+
"properties": {
|
1035 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
1036 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
1037 |
+
"Node name for S&R": "Vyro Mode Filter"
|
1038 |
+
},
|
1039 |
+
"widgets_values": [
|
1040 |
+
"allow",
|
1041 |
+
"allow",
|
1042 |
+
"allow"
|
1043 |
+
]
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"id": 101,
|
1047 |
+
"type": "Reroute",
|
1048 |
+
"pos": [
|
1049 |
+
2229,
|
1050 |
+
-766
|
1051 |
+
],
|
1052 |
+
"size": [
|
1053 |
+
75,
|
1054 |
+
26
|
1055 |
+
],
|
1056 |
+
"flags": {},
|
1057 |
+
"order": 20,
|
1058 |
+
"mode": 0,
|
1059 |
+
"inputs": [
|
1060 |
+
{
|
1061 |
+
"name": "",
|
1062 |
+
"type": "*",
|
1063 |
+
"link": 1165
|
1064 |
+
}
|
1065 |
+
],
|
1066 |
+
"outputs": [
|
1067 |
+
{
|
1068 |
+
"name": "",
|
1069 |
+
"type": "MODEL",
|
1070 |
+
"slot_index": 0,
|
1071 |
+
"links": [
|
1072 |
+
437,
|
1073 |
+
732
|
1074 |
+
]
|
1075 |
+
}
|
1076 |
+
],
|
1077 |
+
"properties": {
|
1078 |
+
"showOutputText": false,
|
1079 |
+
"horizontal": false
|
1080 |
+
}
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"id": 390,
|
1084 |
+
"type": "KSamplerAdvanced",
|
1085 |
+
"pos": [
|
1086 |
+
3448,
|
1087 |
+
-1001
|
1088 |
+
],
|
1089 |
+
"size": [
|
1090 |
+
315,
|
1091 |
+
334
|
1092 |
+
],
|
1093 |
+
"flags": {},
|
1094 |
+
"order": 27,
|
1095 |
+
"mode": 0,
|
1096 |
+
"inputs": [
|
1097 |
+
{
|
1098 |
+
"name": "model",
|
1099 |
+
"type": "MODEL",
|
1100 |
+
"link": 1196
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"name": "positive",
|
1104 |
+
"type": "CONDITIONING",
|
1105 |
+
"link": 1166
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"name": "negative",
|
1109 |
+
"type": "CONDITIONING",
|
1110 |
+
"link": 1167
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"name": "latent_image",
|
1114 |
+
"type": "LATENT",
|
1115 |
+
"link": 1168
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"name": "noise_seed",
|
1119 |
+
"type": "INT",
|
1120 |
+
"widget": {
|
1121 |
+
"name": "noise_seed"
|
1122 |
+
},
|
1123 |
+
"link": 1169
|
1124 |
+
}
|
1125 |
+
],
|
1126 |
+
"outputs": [
|
1127 |
+
{
|
1128 |
+
"name": "LATENT",
|
1129 |
+
"shape": 3,
|
1130 |
+
"type": "LATENT",
|
1131 |
+
"slot_index": 0,
|
1132 |
+
"links": [
|
1133 |
+
1204
|
1134 |
+
]
|
1135 |
+
}
|
1136 |
+
],
|
1137 |
+
"properties": {
|
1138 |
+
"cnr_id": "comfy-core",
|
1139 |
+
"ver": "0.3.27",
|
1140 |
+
"Node name for S&R": "KSamplerAdvanced"
|
1141 |
+
},
|
1142 |
+
"widgets_values": [
|
1143 |
+
"enable",
|
1144 |
+
144870654803597,
|
1145 |
+
"randomize",
|
1146 |
+
20,
|
1147 |
+
8,
|
1148 |
+
"euler",
|
1149 |
+
"normal",
|
1150 |
+
0,
|
1151 |
+
10000,
|
1152 |
+
"disable"
|
1153 |
+
]
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"id": 100,
|
1157 |
+
"type": "VAELoader",
|
1158 |
+
"pos": [
|
1159 |
+
1540,
|
1160 |
+
143
|
1161 |
+
],
|
1162 |
+
"size": [
|
1163 |
+
412.548095703125,
|
1164 |
+
58
|
1165 |
+
],
|
1166 |
+
"flags": {},
|
1167 |
+
"order": 3,
|
1168 |
+
"mode": 0,
|
1169 |
+
"inputs": [],
|
1170 |
+
"outputs": [
|
1171 |
+
{
|
1172 |
+
"name": "VAE",
|
1173 |
+
"shape": 3,
|
1174 |
+
"type": "VAE",
|
1175 |
+
"slot_index": 0,
|
1176 |
+
"links": [
|
1177 |
+
323
|
1178 |
+
]
|
1179 |
+
}
|
1180 |
+
],
|
1181 |
+
"properties": {
|
1182 |
+
"cnr_id": "comfy-core",
|
1183 |
+
"ver": "0.3.27",
|
1184 |
+
"Node name for S&R": "VAELoader"
|
1185 |
+
},
|
1186 |
+
"widgets_values": [
|
1187 |
+
"vae-ft-mse-840000-ema-pruned.safetensors"
|
1188 |
+
]
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"id": 48,
|
1192 |
+
"type": "VyroLatentInterposer",
|
1193 |
+
"pos": [
|
1194 |
+
3861,
|
1195 |
+
-1029
|
1196 |
+
],
|
1197 |
+
"size": [
|
1198 |
+
315,
|
1199 |
+
82
|
1200 |
+
],
|
1201 |
+
"flags": {},
|
1202 |
+
"order": 28,
|
1203 |
+
"mode": 0,
|
1204 |
+
"inputs": [
|
1205 |
+
{
|
1206 |
+
"name": "samples",
|
1207 |
+
"type": "LATENT",
|
1208 |
+
"link": 1204
|
1209 |
+
}
|
1210 |
+
],
|
1211 |
+
"outputs": [
|
1212 |
+
{
|
1213 |
+
"name": "LATENT",
|
1214 |
+
"shape": 3,
|
1215 |
+
"type": "LATENT",
|
1216 |
+
"slot_index": 0,
|
1217 |
+
"links": [
|
1218 |
+
140
|
1219 |
+
]
|
1220 |
+
}
|
1221 |
+
],
|
1222 |
+
"properties": {
|
1223 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
1224 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
1225 |
+
"Node name for S&R": "VyroLatentInterposer"
|
1226 |
+
},
|
1227 |
+
"widgets_values": [
|
1228 |
+
"xl",
|
1229 |
+
"v1"
|
1230 |
+
]
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"id": 393,
|
1234 |
+
"type": "Reroute",
|
1235 |
+
"pos": [
|
1236 |
+
3095,
|
1237 |
+
-1056
|
1238 |
+
],
|
1239 |
+
"size": [
|
1240 |
+
75,
|
1241 |
+
26
|
1242 |
+
],
|
1243 |
+
"flags": {},
|
1244 |
+
"order": 23,
|
1245 |
+
"mode": 0,
|
1246 |
+
"inputs": [
|
1247 |
+
{
|
1248 |
+
"name": "",
|
1249 |
+
"type": "*",
|
1250 |
+
"link": 1195
|
1251 |
+
}
|
1252 |
+
],
|
1253 |
+
"outputs": [
|
1254 |
+
{
|
1255 |
+
"name": "",
|
1256 |
+
"type": "MODEL",
|
1257 |
+
"slot_index": 0,
|
1258 |
+
"links": [
|
1259 |
+
1196
|
1260 |
+
]
|
1261 |
+
}
|
1262 |
+
],
|
1263 |
+
"properties": {
|
1264 |
+
"showOutputText": false,
|
1265 |
+
"horizontal": false
|
1266 |
+
}
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"id": 102,
|
1270 |
+
"type": "LoadImage",
|
1271 |
+
"pos": [
|
1272 |
+
-1527,
|
1273 |
+
-880
|
1274 |
+
],
|
1275 |
+
"size": [
|
1276 |
+
315,
|
1277 |
+
314
|
1278 |
+
],
|
1279 |
+
"flags": {},
|
1280 |
+
"order": 4,
|
1281 |
+
"mode": 0,
|
1282 |
+
"inputs": [],
|
1283 |
+
"outputs": [
|
1284 |
+
{
|
1285 |
+
"name": "IMAGE",
|
1286 |
+
"shape": 3,
|
1287 |
+
"type": "IMAGE",
|
1288 |
+
"slot_index": 0,
|
1289 |
+
"links": [
|
1290 |
+
326
|
1291 |
+
]
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"name": "MASK",
|
1295 |
+
"shape": 3,
|
1296 |
+
"type": "MASK",
|
1297 |
+
"links": null
|
1298 |
+
}
|
1299 |
+
],
|
1300 |
+
"properties": {
|
1301 |
+
"cnr_id": "comfy-core",
|
1302 |
+
"ver": "0.3.27",
|
1303 |
+
"Node name for S&R": "LoadImage"
|
1304 |
+
},
|
1305 |
+
"widgets_values": [
|
1306 |
+
"example.png",
|
1307 |
+
"image",
|
1308 |
+
""
|
1309 |
+
]
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"id": 25,
|
1313 |
+
"type": "Vyro Config Loader",
|
1314 |
+
"pos": [
|
1315 |
+
125,
|
1316 |
+
-526
|
1317 |
+
],
|
1318 |
+
"size": [
|
1319 |
+
315,
|
1320 |
+
162
|
1321 |
+
],
|
1322 |
+
"flags": {},
|
1323 |
+
"order": 5,
|
1324 |
+
"mode": 0,
|
1325 |
+
"inputs": [],
|
1326 |
+
"outputs": [
|
1327 |
+
{
|
1328 |
+
"name": "styles",
|
1329 |
+
"shape": 3,
|
1330 |
+
"type": "LIST",
|
1331 |
+
"slot_index": 0,
|
1332 |
+
"links": [
|
1333 |
+
75
|
1334 |
+
]
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"name": "prompt_tree",
|
1338 |
+
"shape": 3,
|
1339 |
+
"type": "DICT",
|
1340 |
+
"slot_index": 1,
|
1341 |
+
"links": [
|
1342 |
+
50,
|
1343 |
+
1149
|
1344 |
+
]
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"name": "model_config",
|
1348 |
+
"shape": 3,
|
1349 |
+
"type": "DICT",
|
1350 |
+
"slot_index": 2,
|
1351 |
+
"links": [
|
1352 |
+
1148
|
1353 |
+
]
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"name": "classifier",
|
1357 |
+
"shape": 3,
|
1358 |
+
"type": "TRANSFORMER",
|
1359 |
+
"slot_index": 3,
|
1360 |
+
"links": [
|
1361 |
+
51
|
1362 |
+
]
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"name": "unweighted_styles",
|
1366 |
+
"shape": 3,
|
1367 |
+
"type": "LIST",
|
1368 |
+
"slot_index": 4,
|
1369 |
+
"links": []
|
1370 |
+
}
|
1371 |
+
],
|
1372 |
+
"properties": {
|
1373 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
1374 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
1375 |
+
"Node name for S&R": "Vyro Config Loader"
|
1376 |
+
},
|
1377 |
+
"widgets_values": [
|
1378 |
+
"v5.json",
|
1379 |
+
"en_core_web_trf-3.8.0"
|
1380 |
+
]
|
1381 |
+
},
|
1382 |
+
{
|
1383 |
+
"id": 382,
|
1384 |
+
"type": "Vyro Oneflow Base Model Loader",
|
1385 |
+
"pos": [
|
1386 |
+
644.8353881835938,
|
1387 |
+
-1211.888671875
|
1388 |
+
],
|
1389 |
+
"size": [
|
1390 |
+
315,
|
1391 |
+
78
|
1392 |
+
],
|
1393 |
+
"flags": {},
|
1394 |
+
"order": 6,
|
1395 |
+
"mode": 0,
|
1396 |
+
"inputs": [],
|
1397 |
+
"outputs": [
|
1398 |
+
{
|
1399 |
+
"name": "base_model",
|
1400 |
+
"shape": 3,
|
1401 |
+
"type": "MODEL",
|
1402 |
+
"slot_index": 0,
|
1403 |
+
"links": [
|
1404 |
+
1206
|
1405 |
+
]
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"name": "base_clip",
|
1409 |
+
"shape": 3,
|
1410 |
+
"type": "CLIP",
|
1411 |
+
"slot_index": 1,
|
1412 |
+
"links": [
|
1413 |
+
1146
|
1414 |
+
]
|
1415 |
+
}
|
1416 |
+
],
|
1417 |
+
"properties": {
|
1418 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
1419 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
1420 |
+
"Node name for S&R": "Vyro Oneflow Base Model Loader"
|
1421 |
+
},
|
1422 |
+
"widgets_values": [
|
1423 |
+
"sd_xl_base_1.0.safetensors"
|
1424 |
+
]
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"id": 383,
|
1428 |
+
"type": "Vyro LoRa Loader",
|
1429 |
+
"pos": [
|
1430 |
+
1137.228515625,
|
1431 |
+
-1234.281005859375
|
1432 |
+
],
|
1433 |
+
"size": [
|
1434 |
+
292.20001220703125,
|
1435 |
+
106
|
1436 |
+
],
|
1437 |
+
"flags": {},
|
1438 |
+
"order": 16,
|
1439 |
+
"mode": 0,
|
1440 |
+
"inputs": [
|
1441 |
+
{
|
1442 |
+
"name": "base_model",
|
1443 |
+
"type": "MODEL",
|
1444 |
+
"link": 1206
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"name": "base_clip",
|
1448 |
+
"type": "CLIP",
|
1449 |
+
"link": 1146
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"name": "style",
|
1453 |
+
"type": "STYLE",
|
1454 |
+
"link": 1152
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"name": "prompt_tree",
|
1458 |
+
"type": "DICT",
|
1459 |
+
"link": 1150
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"name": "model_config",
|
1463 |
+
"type": "DICT",
|
1464 |
+
"link": 1151
|
1465 |
+
}
|
1466 |
+
],
|
1467 |
+
"outputs": [
|
1468 |
+
{
|
1469 |
+
"name": "base_model",
|
1470 |
+
"shape": 3,
|
1471 |
+
"type": "MODEL",
|
1472 |
+
"slot_index": 0,
|
1473 |
+
"links": [
|
1474 |
+
1164
|
1475 |
+
]
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"name": "base_clip",
|
1479 |
+
"shape": 3,
|
1480 |
+
"type": "CLIP",
|
1481 |
+
"slot_index": 1,
|
1482 |
+
"links": [
|
1483 |
+
1144
|
1484 |
+
]
|
1485 |
+
}
|
1486 |
+
],
|
1487 |
+
"properties": {
|
1488 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
1489 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
1490 |
+
"Node name for S&R": "Vyro LoRa Loader"
|
1491 |
+
},
|
1492 |
+
"widgets_values": []
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"id": 144,
|
1496 |
+
"type": "Vyro Param Extractor",
|
1497 |
+
"pos": [
|
1498 |
+
2857.13623046875,
|
1499 |
+
-499.512939453125
|
1500 |
+
],
|
1501 |
+
"size": [
|
1502 |
+
418.1999816894531,
|
1503 |
+
466
|
1504 |
+
],
|
1505 |
+
"flags": {},
|
1506 |
+
"order": 18,
|
1507 |
+
"mode": 0,
|
1508 |
+
"inputs": [
|
1509 |
+
{
|
1510 |
+
"name": "vyro_params",
|
1511 |
+
"type": "VYRO_PARAMS",
|
1512 |
+
"link": 429
|
1513 |
+
}
|
1514 |
+
],
|
1515 |
+
"outputs": [
|
1516 |
+
{
|
1517 |
+
"name": "latents",
|
1518 |
+
"shape": 3,
|
1519 |
+
"type": "LATENT",
|
1520 |
+
"slot_index": 0,
|
1521 |
+
"links": [
|
1522 |
+
1168
|
1523 |
+
]
|
1524 |
+
},
|
1525 |
+
{
|
1526 |
+
"name": "user_prompt",
|
1527 |
+
"shape": 3,
|
1528 |
+
"type": "STRING",
|
1529 |
+
"links": null
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"name": "user_neg_prompt",
|
1533 |
+
"shape": 3,
|
1534 |
+
"type": "STRING",
|
1535 |
+
"links": null
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"name": "mode",
|
1539 |
+
"shape": 3,
|
1540 |
+
"type": "STRING",
|
1541 |
+
"links": null
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"name": "cfg",
|
1545 |
+
"shape": 3,
|
1546 |
+
"type": "FLOAT",
|
1547 |
+
"links": null
|
1548 |
+
},
|
1549 |
+
{
|
1550 |
+
"name": "batch_size",
|
1551 |
+
"shape": 3,
|
1552 |
+
"type": "INT",
|
1553 |
+
"links": null
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"name": "steps",
|
1557 |
+
"shape": 3,
|
1558 |
+
"type": "INT",
|
1559 |
+
"links": null
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"name": "width",
|
1563 |
+
"shape": 3,
|
1564 |
+
"type": "INT",
|
1565 |
+
"links": null
|
1566 |
+
},
|
1567 |
+
{
|
1568 |
+
"name": "height",
|
1569 |
+
"shape": 3,
|
1570 |
+
"type": "INT",
|
1571 |
+
"links": null
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"name": "seed",
|
1575 |
+
"shape": 3,
|
1576 |
+
"type": "INT",
|
1577 |
+
"slot_index": 9,
|
1578 |
+
"links": [
|
1579 |
+
430,
|
1580 |
+
442,
|
1581 |
+
1169
|
1582 |
+
]
|
1583 |
+
},
|
1584 |
+
{
|
1585 |
+
"name": "denoise",
|
1586 |
+
"shape": 3,
|
1587 |
+
"type": "FLOAT",
|
1588 |
+
"slot_index": 10,
|
1589 |
+
"links": []
|
1590 |
+
},
|
1591 |
+
{
|
1592 |
+
"name": "stage1_strength",
|
1593 |
+
"shape": 3,
|
1594 |
+
"type": "FLOAT",
|
1595 |
+
"links": null
|
1596 |
+
},
|
1597 |
+
{
|
1598 |
+
"name": "stage2_strength",
|
1599 |
+
"shape": 3,
|
1600 |
+
"type": "FLOAT",
|
1601 |
+
"links": []
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"name": "efficiency_multiplier",
|
1605 |
+
"shape": 3,
|
1606 |
+
"type": "FLOAT",
|
1607 |
+
"links": [
|
1608 |
+
1209
|
1609 |
+
]
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"name": "style",
|
1613 |
+
"shape": 3,
|
1614 |
+
"type": "STRING",
|
1615 |
+
"links": null
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"name": "final_positive_prompt",
|
1619 |
+
"shape": 3,
|
1620 |
+
"type": "STRING",
|
1621 |
+
"slot_index": 15,
|
1622 |
+
"links": []
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"name": "final_negative_prompt",
|
1626 |
+
"shape": 3,
|
1627 |
+
"type": "STRING",
|
1628 |
+
"links": null
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"name": "is_raw",
|
1632 |
+
"shape": 3,
|
1633 |
+
"type": "BOOLEAN",
|
1634 |
+
"links": null
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"name": "final_negative_prompt",
|
1638 |
+
"shape": 3,
|
1639 |
+
"type": "STRING",
|
1640 |
+
"links": null
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"name": "is_raw",
|
1644 |
+
"shape": 3,
|
1645 |
+
"type": "BOOLEAN",
|
1646 |
+
"links": null
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"name": "face_swap_img",
|
1650 |
+
"shape": 3,
|
1651 |
+
"type": "IMAGE",
|
1652 |
+
"links": null
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"name": "image_prompt_weights",
|
1656 |
+
"shape": 3,
|
1657 |
+
"type": "STRING",
|
1658 |
+
"links": null
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"name": "control_net_input_img",
|
1662 |
+
"shape": 3,
|
1663 |
+
"type": "IMAGE",
|
1664 |
+
"links": null
|
1665 |
+
}
|
1666 |
+
],
|
1667 |
+
"properties": {
|
1668 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
1669 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
1670 |
+
"Node name for S&R": "Vyro Param Extractor"
|
1671 |
+
},
|
1672 |
+
"widgets_values": []
|
1673 |
+
},
|
1674 |
+
{
|
1675 |
+
"id": 49,
|
1676 |
+
"type": "LatentUpscaleBy",
|
1677 |
+
"pos": [
|
1678 |
+
4250,
|
1679 |
+
-1046
|
1680 |
+
],
|
1681 |
+
"size": [
|
1682 |
+
315,
|
1683 |
+
82
|
1684 |
+
],
|
1685 |
+
"flags": {},
|
1686 |
+
"order": 29,
|
1687 |
+
"mode": 0,
|
1688 |
+
"inputs": [
|
1689 |
+
{
|
1690 |
+
"name": "samples",
|
1691 |
+
"type": "LATENT",
|
1692 |
+
"link": 140
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"name": "scale_by",
|
1696 |
+
"type": "FLOAT",
|
1697 |
+
"widget": {
|
1698 |
+
"name": "scale_by"
|
1699 |
+
},
|
1700 |
+
"link": 1209
|
1701 |
+
}
|
1702 |
+
],
|
1703 |
+
"outputs": [
|
1704 |
+
{
|
1705 |
+
"name": "LATENT",
|
1706 |
+
"shape": 3,
|
1707 |
+
"type": "LATENT",
|
1708 |
+
"slot_index": 0,
|
1709 |
+
"links": [
|
1710 |
+
176
|
1711 |
+
]
|
1712 |
+
}
|
1713 |
+
],
|
1714 |
+
"properties": {
|
1715 |
+
"cnr_id": "comfy-core",
|
1716 |
+
"ver": "0.3.27",
|
1717 |
+
"Node name for S&R": "LatentUpscaleBy"
|
1718 |
+
},
|
1719 |
+
"widgets_values": [
|
1720 |
+
"nearest-exact",
|
1721 |
+
1.333
|
1722 |
+
]
|
1723 |
+
},
|
1724 |
+
{
|
1725 |
+
"id": 16,
|
1726 |
+
"type": "Vyro Pipe Input V2",
|
1727 |
+
"pos": [
|
1728 |
+
-584,
|
1729 |
+
-1007
|
1730 |
+
],
|
1731 |
+
"size": [
|
1732 |
+
400,
|
1733 |
+
732
|
1734 |
+
],
|
1735 |
+
"flags": {},
|
1736 |
+
"order": 11,
|
1737 |
+
"mode": 0,
|
1738 |
+
"inputs": [
|
1739 |
+
{
|
1740 |
+
"name": "vae",
|
1741 |
+
"type": "VAE",
|
1742 |
+
"link": 210
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"name": "init_img",
|
1746 |
+
"type": "STRING",
|
1747 |
+
"widget": {
|
1748 |
+
"name": "init_img"
|
1749 |
+
},
|
1750 |
+
"link": 950
|
1751 |
+
}
|
1752 |
+
],
|
1753 |
+
"outputs": [
|
1754 |
+
{
|
1755 |
+
"name": "vyro_params",
|
1756 |
+
"shape": 3,
|
1757 |
+
"type": "VYRO_PARAMS",
|
1758 |
+
"slot_index": 0,
|
1759 |
+
"links": [
|
1760 |
+
48
|
1761 |
+
]
|
1762 |
+
}
|
1763 |
+
],
|
1764 |
+
"properties": {
|
1765 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
1766 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
1767 |
+
"Node name for S&R": "Vyro Pipe Input V2"
|
1768 |
+
},
|
1769 |
+
"widgets_values": [
|
1770 |
+
"professor working in lab",
|
1771 |
+
"t2i",
|
1772 |
+
"perlin1",
|
1773 |
+
"",
|
1774 |
+
1,
|
1775 |
+
8,
|
1776 |
+
10,
|
1777 |
+
1024,
|
1778 |
+
1024,
|
1779 |
+
2890257064,
|
1780 |
+
"randomize",
|
1781 |
+
"",
|
1782 |
+
0.8,
|
1783 |
+
1,
|
1784 |
+
1,
|
1785 |
+
1
|
1786 |
+
]
|
1787 |
+
}
|
1788 |
+
],
|
1789 |
+
"links": [
|
1790 |
+
[
|
1791 |
+
48,
|
1792 |
+
16,
|
1793 |
+
0,
|
1794 |
+
27,
|
1795 |
+
0,
|
1796 |
+
"VYRO_PARAMS"
|
1797 |
+
],
|
1798 |
+
[
|
1799 |
+
50,
|
1800 |
+
25,
|
1801 |
+
1,
|
1802 |
+
27,
|
1803 |
+
2,
|
1804 |
+
"DICT"
|
1805 |
+
],
|
1806 |
+
[
|
1807 |
+
51,
|
1808 |
+
25,
|
1809 |
+
3,
|
1810 |
+
27,
|
1811 |
+
3,
|
1812 |
+
"TRANSFORMER"
|
1813 |
+
],
|
1814 |
+
[
|
1815 |
+
75,
|
1816 |
+
25,
|
1817 |
+
0,
|
1818 |
+
27,
|
1819 |
+
1,
|
1820 |
+
"LIST"
|
1821 |
+
],
|
1822 |
+
[
|
1823 |
+
140,
|
1824 |
+
48,
|
1825 |
+
0,
|
1826 |
+
49,
|
1827 |
+
0,
|
1828 |
+
"LATENT"
|
1829 |
+
],
|
1830 |
+
[
|
1831 |
+
147,
|
1832 |
+
27,
|
1833 |
+
0,
|
1834 |
+
55,
|
1835 |
+
0,
|
1836 |
+
"*"
|
1837 |
+
],
|
1838 |
+
[
|
1839 |
+
176,
|
1840 |
+
49,
|
1841 |
+
0,
|
1842 |
+
63,
|
1843 |
+
3,
|
1844 |
+
"LATENT"
|
1845 |
+
],
|
1846 |
+
[
|
1847 |
+
209,
|
1848 |
+
2,
|
1849 |
+
0,
|
1850 |
+
71,
|
1851 |
+
0,
|
1852 |
+
"*"
|
1853 |
+
],
|
1854 |
+
[
|
1855 |
+
210,
|
1856 |
+
71,
|
1857 |
+
0,
|
1858 |
+
16,
|
1859 |
+
0,
|
1860 |
+
"VAE"
|
1861 |
+
],
|
1862 |
+
[
|
1863 |
+
211,
|
1864 |
+
28,
|
1865 |
+
2,
|
1866 |
+
63,
|
1867 |
+
1,
|
1868 |
+
"CONDITIONING"
|
1869 |
+
],
|
1870 |
+
[
|
1871 |
+
212,
|
1872 |
+
28,
|
1873 |
+
3,
|
1874 |
+
63,
|
1875 |
+
2,
|
1876 |
+
"CONDITIONING"
|
1877 |
+
],
|
1878 |
+
[
|
1879 |
+
323,
|
1880 |
+
100,
|
1881 |
+
0,
|
1882 |
+
57,
|
1883 |
+
1,
|
1884 |
+
"VAE"
|
1885 |
+
],
|
1886 |
+
[
|
1887 |
+
326,
|
1888 |
+
102,
|
1889 |
+
0,
|
1890 |
+
103,
|
1891 |
+
0,
|
1892 |
+
"IMAGE"
|
1893 |
+
],
|
1894 |
+
[
|
1895 |
+
429,
|
1896 |
+
135,
|
1897 |
+
0,
|
1898 |
+
144,
|
1899 |
+
0,
|
1900 |
+
"VYRO_PARAMS"
|
1901 |
+
],
|
1902 |
+
[
|
1903 |
+
430,
|
1904 |
+
144,
|
1905 |
+
9,
|
1906 |
+
63,
|
1907 |
+
4,
|
1908 |
+
"INT"
|
1909 |
+
],
|
1910 |
+
[
|
1911 |
+
435,
|
1912 |
+
28,
|
1913 |
+
2,
|
1914 |
+
147,
|
1915 |
+
0,
|
1916 |
+
"*"
|
1917 |
+
],
|
1918 |
+
[
|
1919 |
+
436,
|
1920 |
+
28,
|
1921 |
+
3,
|
1922 |
+
148,
|
1923 |
+
0,
|
1924 |
+
"*"
|
1925 |
+
],
|
1926 |
+
[
|
1927 |
+
437,
|
1928 |
+
101,
|
1929 |
+
0,
|
1930 |
+
149,
|
1931 |
+
0,
|
1932 |
+
"*"
|
1933 |
+
],
|
1934 |
+
[
|
1935 |
+
439,
|
1936 |
+
147,
|
1937 |
+
0,
|
1938 |
+
145,
|
1939 |
+
1,
|
1940 |
+
"CONDITIONING"
|
1941 |
+
],
|
1942 |
+
[
|
1943 |
+
440,
|
1944 |
+
148,
|
1945 |
+
0,
|
1946 |
+
145,
|
1947 |
+
2,
|
1948 |
+
"CONDITIONING"
|
1949 |
+
],
|
1950 |
+
[
|
1951 |
+
441,
|
1952 |
+
63,
|
1953 |
+
0,
|
1954 |
+
145,
|
1955 |
+
3,
|
1956 |
+
"LATENT"
|
1957 |
+
],
|
1958 |
+
[
|
1959 |
+
442,
|
1960 |
+
144,
|
1961 |
+
9,
|
1962 |
+
150,
|
1963 |
+
0,
|
1964 |
+
"*"
|
1965 |
+
],
|
1966 |
+
[
|
1967 |
+
443,
|
1968 |
+
150,
|
1969 |
+
0,
|
1970 |
+
145,
|
1971 |
+
4,
|
1972 |
+
"INT"
|
1973 |
+
],
|
1974 |
+
[
|
1975 |
+
444,
|
1976 |
+
149,
|
1977 |
+
0,
|
1978 |
+
151,
|
1979 |
+
0,
|
1980 |
+
"MODEL"
|
1981 |
+
],
|
1982 |
+
[
|
1983 |
+
445,
|
1984 |
+
147,
|
1985 |
+
0,
|
1986 |
+
151,
|
1987 |
+
1,
|
1988 |
+
"CONDITIONING"
|
1989 |
+
],
|
1990 |
+
[
|
1991 |
+
446,
|
1992 |
+
148,
|
1993 |
+
0,
|
1994 |
+
151,
|
1995 |
+
2,
|
1996 |
+
"CONDITIONING"
|
1997 |
+
],
|
1998 |
+
[
|
1999 |
+
447,
|
2000 |
+
145,
|
2001 |
+
0,
|
2002 |
+
151,
|
2003 |
+
3,
|
2004 |
+
"LATENT"
|
2005 |
+
],
|
2006 |
+
[
|
2007 |
+
448,
|
2008 |
+
150,
|
2009 |
+
0,
|
2010 |
+
151,
|
2011 |
+
4,
|
2012 |
+
"INT"
|
2013 |
+
],
|
2014 |
+
[
|
2015 |
+
624,
|
2016 |
+
55,
|
2017 |
+
0,
|
2018 |
+
135,
|
2019 |
+
0,
|
2020 |
+
"VYRO_PARAMS"
|
2021 |
+
],
|
2022 |
+
[
|
2023 |
+
728,
|
2024 |
+
151,
|
2025 |
+
0,
|
2026 |
+
57,
|
2027 |
+
0,
|
2028 |
+
"LATENT"
|
2029 |
+
],
|
2030 |
+
[
|
2031 |
+
732,
|
2032 |
+
101,
|
2033 |
+
0,
|
2034 |
+
145,
|
2035 |
+
0,
|
2036 |
+
"MODEL"
|
2037 |
+
],
|
2038 |
+
[
|
2039 |
+
734,
|
2040 |
+
149,
|
2041 |
+
0,
|
2042 |
+
63,
|
2043 |
+
0,
|
2044 |
+
"MODEL"
|
2045 |
+
],
|
2046 |
+
[
|
2047 |
+
950,
|
2048 |
+
103,
|
2049 |
+
0,
|
2050 |
+
16,
|
2051 |
+
1,
|
2052 |
+
"STRING"
|
2053 |
+
],
|
2054 |
+
[
|
2055 |
+
1142,
|
2056 |
+
57,
|
2057 |
+
0,
|
2058 |
+
84,
|
2059 |
+
0,
|
2060 |
+
"IMAGE"
|
2061 |
+
],
|
2062 |
+
[
|
2063 |
+
1144,
|
2064 |
+
383,
|
2065 |
+
1,
|
2066 |
+
28,
|
2067 |
+
0,
|
2068 |
+
"CLIP"
|
2069 |
+
],
|
2070 |
+
[
|
2071 |
+
1146,
|
2072 |
+
382,
|
2073 |
+
1,
|
2074 |
+
383,
|
2075 |
+
1,
|
2076 |
+
"CLIP"
|
2077 |
+
],
|
2078 |
+
[
|
2079 |
+
1147,
|
2080 |
+
27,
|
2081 |
+
1,
|
2082 |
+
385,
|
2083 |
+
0,
|
2084 |
+
"*"
|
2085 |
+
],
|
2086 |
+
[
|
2087 |
+
1148,
|
2088 |
+
25,
|
2089 |
+
2,
|
2090 |
+
387,
|
2091 |
+
0,
|
2092 |
+
"*"
|
2093 |
+
],
|
2094 |
+
[
|
2095 |
+
1149,
|
2096 |
+
25,
|
2097 |
+
1,
|
2098 |
+
386,
|
2099 |
+
0,
|
2100 |
+
"*"
|
2101 |
+
],
|
2102 |
+
[
|
2103 |
+
1150,
|
2104 |
+
386,
|
2105 |
+
0,
|
2106 |
+
383,
|
2107 |
+
3,
|
2108 |
+
"DICT"
|
2109 |
+
],
|
2110 |
+
[
|
2111 |
+
1151,
|
2112 |
+
387,
|
2113 |
+
0,
|
2114 |
+
383,
|
2115 |
+
4,
|
2116 |
+
"DICT"
|
2117 |
+
],
|
2118 |
+
[
|
2119 |
+
1152,
|
2120 |
+
385,
|
2121 |
+
0,
|
2122 |
+
383,
|
2123 |
+
2,
|
2124 |
+
"STYLE"
|
2125 |
+
],
|
2126 |
+
[
|
2127 |
+
1153,
|
2128 |
+
385,
|
2129 |
+
0,
|
2130 |
+
384,
|
2131 |
+
0,
|
2132 |
+
"STYLE"
|
2133 |
+
],
|
2134 |
+
[
|
2135 |
+
1155,
|
2136 |
+
386,
|
2137 |
+
0,
|
2138 |
+
384,
|
2139 |
+
1,
|
2140 |
+
"DICT"
|
2141 |
+
],
|
2142 |
+
[
|
2143 |
+
1156,
|
2144 |
+
387,
|
2145 |
+
0,
|
2146 |
+
384,
|
2147 |
+
2,
|
2148 |
+
"DICT"
|
2149 |
+
],
|
2150 |
+
[
|
2151 |
+
1158,
|
2152 |
+
384,
|
2153 |
+
1,
|
2154 |
+
28,
|
2155 |
+
1,
|
2156 |
+
"CLIP"
|
2157 |
+
],
|
2158 |
+
[
|
2159 |
+
1164,
|
2160 |
+
383,
|
2161 |
+
0,
|
2162 |
+
254,
|
2163 |
+
0,
|
2164 |
+
"*"
|
2165 |
+
],
|
2166 |
+
[
|
2167 |
+
1165,
|
2168 |
+
384,
|
2169 |
+
0,
|
2170 |
+
101,
|
2171 |
+
0,
|
2172 |
+
"*"
|
2173 |
+
],
|
2174 |
+
[
|
2175 |
+
1166,
|
2176 |
+
28,
|
2177 |
+
0,
|
2178 |
+
390,
|
2179 |
+
1,
|
2180 |
+
"CONDITIONING"
|
2181 |
+
],
|
2182 |
+
[
|
2183 |
+
1167,
|
2184 |
+
28,
|
2185 |
+
1,
|
2186 |
+
390,
|
2187 |
+
2,
|
2188 |
+
"CONDITIONING"
|
2189 |
+
],
|
2190 |
+
[
|
2191 |
+
1168,
|
2192 |
+
144,
|
2193 |
+
0,
|
2194 |
+
390,
|
2195 |
+
3,
|
2196 |
+
"LATENT"
|
2197 |
+
],
|
2198 |
+
[
|
2199 |
+
1169,
|
2200 |
+
144,
|
2201 |
+
9,
|
2202 |
+
390,
|
2203 |
+
4,
|
2204 |
+
"INT"
|
2205 |
+
],
|
2206 |
+
[
|
2207 |
+
1195,
|
2208 |
+
254,
|
2209 |
+
0,
|
2210 |
+
393,
|
2211 |
+
0,
|
2212 |
+
"*"
|
2213 |
+
],
|
2214 |
+
[
|
2215 |
+
1196,
|
2216 |
+
393,
|
2217 |
+
0,
|
2218 |
+
390,
|
2219 |
+
0,
|
2220 |
+
"MODEL"
|
2221 |
+
],
|
2222 |
+
[
|
2223 |
+
1204,
|
2224 |
+
390,
|
2225 |
+
0,
|
2226 |
+
48,
|
2227 |
+
0,
|
2228 |
+
"LATENT"
|
2229 |
+
],
|
2230 |
+
[
|
2231 |
+
1205,
|
2232 |
+
27,
|
2233 |
+
0,
|
2234 |
+
28,
|
2235 |
+
2,
|
2236 |
+
"VYRO_PARAMS"
|
2237 |
+
],
|
2238 |
+
[
|
2239 |
+
1206,
|
2240 |
+
382,
|
2241 |
+
0,
|
2242 |
+
383,
|
2243 |
+
0,
|
2244 |
+
"MODEL"
|
2245 |
+
],
|
2246 |
+
[
|
2247 |
+
1209,
|
2248 |
+
144,
|
2249 |
+
13,
|
2250 |
+
49,
|
2251 |
+
1,
|
2252 |
+
"FLOAT"
|
2253 |
+
]
|
2254 |
+
],
|
2255 |
+
"groups": [
|
2256 |
+
{
|
2257 |
+
"id": 1,
|
2258 |
+
"title": "I/O",
|
2259 |
+
"bounding": [
|
2260 |
+
-673,
|
2261 |
+
-1108,
|
2262 |
+
1094,
|
2263 |
+
787
|
2264 |
+
],
|
2265 |
+
"color": "#3f789e",
|
2266 |
+
"font_size": 24,
|
2267 |
+
"flags": {}
|
2268 |
+
},
|
2269 |
+
{
|
2270 |
+
"id": 2,
|
2271 |
+
"title": "Analysis/Encoding",
|
2272 |
+
"bounding": [
|
2273 |
+
842,
|
2274 |
+
-1110,
|
2275 |
+
1491,
|
2276 |
+
810
|
2277 |
+
],
|
2278 |
+
"color": "#8AA",
|
2279 |
+
"font_size": 24,
|
2280 |
+
"flags": {}
|
2281 |
+
},
|
2282 |
+
{
|
2283 |
+
"id": 3,
|
2284 |
+
"title": "T2I/I2I",
|
2285 |
+
"bounding": [
|
2286 |
+
2661,
|
2287 |
+
-1160,
|
2288 |
+
3644,
|
2289 |
+
1695
|
2290 |
+
],
|
2291 |
+
"color": "#3f789e",
|
2292 |
+
"font_size": 24,
|
2293 |
+
"flags": {}
|
2294 |
+
}
|
2295 |
+
],
|
2296 |
+
"config": {},
|
2297 |
+
"extra": {
|
2298 |
+
"ds": {
|
2299 |
+
"scale": 0.2853116706110015,
|
2300 |
+
"offset": [
|
2301 |
+
2577.217082241404,
|
2302 |
+
2131.7449438691942
|
2303 |
+
]
|
2304 |
+
}
|
2305 |
+
},
|
2306 |
+
"version": 0.4
|
2307 |
+
}
|
Imagine/Workflows/Imaginev5-ultra-Workflow.json
ADDED
@@ -0,0 +1,1433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"id": "f2d9da4d-a1e8-47f3-b08e-e6bc0ea46feb",
|
3 |
+
"revision": 0,
|
4 |
+
"last_node_id": 99,
|
5 |
+
"last_link_id": 263,
|
6 |
+
"nodes": [
|
7 |
+
{
|
8 |
+
"id": 35,
|
9 |
+
"type": "Reroute",
|
10 |
+
"pos": [
|
11 |
+
530,
|
12 |
+
770
|
13 |
+
],
|
14 |
+
"size": [
|
15 |
+
75,
|
16 |
+
26
|
17 |
+
],
|
18 |
+
"flags": {},
|
19 |
+
"order": 0,
|
20 |
+
"mode": 0,
|
21 |
+
"inputs": [
|
22 |
+
{
|
23 |
+
"name": "",
|
24 |
+
"type": "*",
|
25 |
+
"link": null
|
26 |
+
}
|
27 |
+
],
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"name": "",
|
31 |
+
"type": "*",
|
32 |
+
"links": []
|
33 |
+
}
|
34 |
+
],
|
35 |
+
"properties": {
|
36 |
+
"showOutputText": false,
|
37 |
+
"horizontal": false
|
38 |
+
}
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"id": 36,
|
42 |
+
"type": "Reroute",
|
43 |
+
"pos": [
|
44 |
+
530,
|
45 |
+
820
|
46 |
+
],
|
47 |
+
"size": [
|
48 |
+
75,
|
49 |
+
26
|
50 |
+
],
|
51 |
+
"flags": {},
|
52 |
+
"order": 1,
|
53 |
+
"mode": 0,
|
54 |
+
"inputs": [
|
55 |
+
{
|
56 |
+
"name": "",
|
57 |
+
"type": "*",
|
58 |
+
"link": null
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"outputs": [
|
62 |
+
{
|
63 |
+
"name": "",
|
64 |
+
"type": "*",
|
65 |
+
"links": []
|
66 |
+
}
|
67 |
+
],
|
68 |
+
"properties": {
|
69 |
+
"showOutputText": false,
|
70 |
+
"horizontal": false
|
71 |
+
}
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"id": 45,
|
75 |
+
"type": "Reroute",
|
76 |
+
"pos": [
|
77 |
+
840,
|
78 |
+
50
|
79 |
+
],
|
80 |
+
"size": [
|
81 |
+
75,
|
82 |
+
26
|
83 |
+
],
|
84 |
+
"flags": {},
|
85 |
+
"order": 5,
|
86 |
+
"mode": 0,
|
87 |
+
"inputs": [
|
88 |
+
{
|
89 |
+
"name": "",
|
90 |
+
"type": "*",
|
91 |
+
"link": 82
|
92 |
+
}
|
93 |
+
],
|
94 |
+
"outputs": [
|
95 |
+
{
|
96 |
+
"name": "",
|
97 |
+
"type": "CLIP",
|
98 |
+
"slot_index": 0,
|
99 |
+
"links": [
|
100 |
+
83,
|
101 |
+
84
|
102 |
+
]
|
103 |
+
}
|
104 |
+
],
|
105 |
+
"properties": {
|
106 |
+
"showOutputText": false,
|
107 |
+
"horizontal": false
|
108 |
+
}
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"id": 66,
|
112 |
+
"type": "Reroute",
|
113 |
+
"pos": [
|
114 |
+
830,
|
115 |
+
110
|
116 |
+
],
|
117 |
+
"size": [
|
118 |
+
75,
|
119 |
+
26
|
120 |
+
],
|
121 |
+
"flags": {},
|
122 |
+
"order": 6,
|
123 |
+
"mode": 0,
|
124 |
+
"inputs": [
|
125 |
+
{
|
126 |
+
"name": "",
|
127 |
+
"type": "*",
|
128 |
+
"link": 150
|
129 |
+
}
|
130 |
+
],
|
131 |
+
"outputs": [
|
132 |
+
{
|
133 |
+
"name": "",
|
134 |
+
"type": "VAE",
|
135 |
+
"slot_index": 0,
|
136 |
+
"links": [
|
137 |
+
188
|
138 |
+
]
|
139 |
+
}
|
140 |
+
],
|
141 |
+
"properties": {
|
142 |
+
"showOutputText": false,
|
143 |
+
"horizontal": false
|
144 |
+
}
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"id": 87,
|
148 |
+
"type": "Reroute",
|
149 |
+
"pos": [
|
150 |
+
85,
|
151 |
+
253
|
152 |
+
],
|
153 |
+
"size": [
|
154 |
+
75,
|
155 |
+
26
|
156 |
+
],
|
157 |
+
"flags": {},
|
158 |
+
"order": 9,
|
159 |
+
"mode": 0,
|
160 |
+
"inputs": [
|
161 |
+
{
|
162 |
+
"name": "",
|
163 |
+
"type": "*",
|
164 |
+
"widget": {
|
165 |
+
"name": "value"
|
166 |
+
},
|
167 |
+
"link": 227
|
168 |
+
}
|
169 |
+
],
|
170 |
+
"outputs": [
|
171 |
+
{
|
172 |
+
"name": "",
|
173 |
+
"type": "STRING",
|
174 |
+
"slot_index": 0,
|
175 |
+
"links": [
|
176 |
+
228,
|
177 |
+
229
|
178 |
+
]
|
179 |
+
}
|
180 |
+
],
|
181 |
+
"properties": {
|
182 |
+
"showOutputText": false,
|
183 |
+
"horizontal": false
|
184 |
+
}
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"id": 92,
|
188 |
+
"type": "EmptyLatentImage",
|
189 |
+
"pos": [
|
190 |
+
1001,
|
191 |
+
1057
|
192 |
+
],
|
193 |
+
"size": [
|
194 |
+
315,
|
195 |
+
106
|
196 |
+
],
|
197 |
+
"flags": {},
|
198 |
+
"order": 11,
|
199 |
+
"mode": 0,
|
200 |
+
"inputs": [
|
201 |
+
{
|
202 |
+
"name": "width",
|
203 |
+
"type": "INT",
|
204 |
+
"widget": {
|
205 |
+
"name": "width"
|
206 |
+
},
|
207 |
+
"link": 241
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"name": "height",
|
211 |
+
"type": "INT",
|
212 |
+
"widget": {
|
213 |
+
"name": "height"
|
214 |
+
},
|
215 |
+
"link": 242
|
216 |
+
}
|
217 |
+
],
|
218 |
+
"outputs": [
|
219 |
+
{
|
220 |
+
"name": "LATENT",
|
221 |
+
"shape": 3,
|
222 |
+
"type": "LATENT",
|
223 |
+
"slot_index": 0,
|
224 |
+
"links": [
|
225 |
+
243
|
226 |
+
]
|
227 |
+
}
|
228 |
+
],
|
229 |
+
"properties": {
|
230 |
+
"cnr_id": "comfy-core",
|
231 |
+
"ver": "0.3.27",
|
232 |
+
"Node name for S&R": "EmptyLatentImage"
|
233 |
+
},
|
234 |
+
"widgets_values": [
|
235 |
+
512,
|
236 |
+
512,
|
237 |
+
1
|
238 |
+
]
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"id": 86,
|
242 |
+
"type": "Vyro Param Extractor",
|
243 |
+
"pos": [
|
244 |
+
-379,
|
245 |
+
228
|
246 |
+
],
|
247 |
+
"size": [
|
248 |
+
418.1999816894531,
|
249 |
+
466
|
250 |
+
],
|
251 |
+
"flags": {},
|
252 |
+
"order": 8,
|
253 |
+
"mode": 0,
|
254 |
+
"inputs": [
|
255 |
+
{
|
256 |
+
"name": "vyro_params",
|
257 |
+
"type": "VYRO_PARAMS",
|
258 |
+
"link": 226
|
259 |
+
}
|
260 |
+
],
|
261 |
+
"outputs": [
|
262 |
+
{
|
263 |
+
"name": "latents",
|
264 |
+
"shape": 3,
|
265 |
+
"type": "LATENT",
|
266 |
+
"slot_index": 0,
|
267 |
+
"links": null
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"name": "user_prompt",
|
271 |
+
"shape": 3,
|
272 |
+
"type": "STRING",
|
273 |
+
"slot_index": 1,
|
274 |
+
"links": [
|
275 |
+
227
|
276 |
+
]
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"name": "user_neg_prompt",
|
280 |
+
"shape": 3,
|
281 |
+
"type": "STRING",
|
282 |
+
"slot_index": 2,
|
283 |
+
"links": [
|
284 |
+
238
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"name": "mode",
|
289 |
+
"shape": 3,
|
290 |
+
"type": "STRING",
|
291 |
+
"links": null
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"name": "cfg",
|
295 |
+
"shape": 3,
|
296 |
+
"type": "FLOAT",
|
297 |
+
"links": null
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"name": "batch_size",
|
301 |
+
"shape": 3,
|
302 |
+
"type": "INT",
|
303 |
+
"links": null
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"name": "steps",
|
307 |
+
"shape": 3,
|
308 |
+
"type": "INT",
|
309 |
+
"links": null
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"name": "width",
|
313 |
+
"shape": 3,
|
314 |
+
"type": "INT",
|
315 |
+
"slot_index": 7,
|
316 |
+
"links": [
|
317 |
+
241
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"name": "height",
|
322 |
+
"shape": 3,
|
323 |
+
"type": "INT",
|
324 |
+
"slot_index": 8,
|
325 |
+
"links": [
|
326 |
+
242
|
327 |
+
]
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"name": "seed",
|
331 |
+
"shape": 3,
|
332 |
+
"type": "INT",
|
333 |
+
"links": [
|
334 |
+
247,
|
335 |
+
248
|
336 |
+
]
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"name": "denoise",
|
340 |
+
"shape": 3,
|
341 |
+
"type": "FLOAT",
|
342 |
+
"links": null
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"name": "stage1_strength",
|
346 |
+
"shape": 3,
|
347 |
+
"type": "FLOAT",
|
348 |
+
"links": null
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"name": "stage2_strength",
|
352 |
+
"shape": 3,
|
353 |
+
"type": "FLOAT",
|
354 |
+
"links": null
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"name": "efficiency_multiplier",
|
358 |
+
"shape": 3,
|
359 |
+
"type": "FLOAT",
|
360 |
+
"links": null
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"name": "style",
|
364 |
+
"shape": 3,
|
365 |
+
"type": "STRING",
|
366 |
+
"links": null
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"name": "final_positive_prompt",
|
370 |
+
"shape": 3,
|
371 |
+
"type": "STRING",
|
372 |
+
"links": null
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"name": "final_negative_prompt",
|
376 |
+
"shape": 3,
|
377 |
+
"type": "STRING",
|
378 |
+
"links": null
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"name": "is_raw",
|
382 |
+
"shape": 3,
|
383 |
+
"type": "BOOLEAN",
|
384 |
+
"links": null
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"name": "final_negative_prompt",
|
388 |
+
"shape": 3,
|
389 |
+
"type": "STRING",
|
390 |
+
"links": null
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"name": "is_raw",
|
394 |
+
"shape": 3,
|
395 |
+
"type": "BOOLEAN",
|
396 |
+
"links": null
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"name": "face_swap_img",
|
400 |
+
"shape": 3,
|
401 |
+
"type": "IMAGE",
|
402 |
+
"links": null
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"name": "image_prompt_weights",
|
406 |
+
"shape": 3,
|
407 |
+
"type": "STRING",
|
408 |
+
"links": null
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"name": "control_net_input_img",
|
412 |
+
"shape": 3,
|
413 |
+
"type": "IMAGE",
|
414 |
+
"links": null
|
415 |
+
}
|
416 |
+
],
|
417 |
+
"properties": {
|
418 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
419 |
+
"ver": "987bd627ca63ee6815b42082eccf1b2199bf53ed",
|
420 |
+
"Node name for S&R": "Vyro Param Extractor"
|
421 |
+
},
|
422 |
+
"widgets_values": []
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"id": 89,
|
426 |
+
"type": "Reroute",
|
427 |
+
"pos": [
|
428 |
+
141,
|
429 |
+
329
|
430 |
+
],
|
431 |
+
"size": [
|
432 |
+
75,
|
433 |
+
26
|
434 |
+
],
|
435 |
+
"flags": {},
|
436 |
+
"order": 10,
|
437 |
+
"mode": 0,
|
438 |
+
"inputs": [
|
439 |
+
{
|
440 |
+
"name": "",
|
441 |
+
"type": "*",
|
442 |
+
"widget": {
|
443 |
+
"name": "value"
|
444 |
+
},
|
445 |
+
"link": 238
|
446 |
+
}
|
447 |
+
],
|
448 |
+
"outputs": [
|
449 |
+
{
|
450 |
+
"name": "",
|
451 |
+
"type": "STRING",
|
452 |
+
"slot_index": 0,
|
453 |
+
"links": [
|
454 |
+
239,
|
455 |
+
240
|
456 |
+
]
|
457 |
+
}
|
458 |
+
],
|
459 |
+
"properties": {
|
460 |
+
"showOutputText": false,
|
461 |
+
"horizontal": false
|
462 |
+
}
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"id": 30,
|
466 |
+
"type": "CLIPTextEncodeSDXL",
|
467 |
+
"pos": [
|
468 |
+
1009,
|
469 |
+
728
|
470 |
+
],
|
471 |
+
"size": [
|
472 |
+
400,
|
473 |
+
270.0000305175781
|
474 |
+
],
|
475 |
+
"flags": {},
|
476 |
+
"order": 13,
|
477 |
+
"mode": 0,
|
478 |
+
"inputs": [
|
479 |
+
{
|
480 |
+
"name": "clip",
|
481 |
+
"type": "CLIP",
|
482 |
+
"link": 84
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"name": "text_g",
|
486 |
+
"type": "STRING",
|
487 |
+
"widget": {
|
488 |
+
"name": "text_g"
|
489 |
+
},
|
490 |
+
"link": 239
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"name": "text_l",
|
494 |
+
"type": "STRING",
|
495 |
+
"widget": {
|
496 |
+
"name": "text_l"
|
497 |
+
},
|
498 |
+
"link": 240
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"name": "width",
|
502 |
+
"type": "INT",
|
503 |
+
"widget": {
|
504 |
+
"name": "width"
|
505 |
+
},
|
506 |
+
"link": 234
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"name": "height",
|
510 |
+
"type": "INT",
|
511 |
+
"widget": {
|
512 |
+
"name": "height"
|
513 |
+
},
|
514 |
+
"link": 235
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"name": "target_width",
|
518 |
+
"type": "INT",
|
519 |
+
"widget": {
|
520 |
+
"name": "target_width"
|
521 |
+
},
|
522 |
+
"link": 236
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"name": "target_height",
|
526 |
+
"type": "INT",
|
527 |
+
"widget": {
|
528 |
+
"name": "target_height"
|
529 |
+
},
|
530 |
+
"link": 237
|
531 |
+
}
|
532 |
+
],
|
533 |
+
"outputs": [
|
534 |
+
{
|
535 |
+
"name": "CONDITIONING",
|
536 |
+
"shape": 3,
|
537 |
+
"type": "CONDITIONING",
|
538 |
+
"slot_index": 0,
|
539 |
+
"links": [
|
540 |
+
159,
|
541 |
+
163
|
542 |
+
]
|
543 |
+
}
|
544 |
+
],
|
545 |
+
"title": "negativePromt_sdxl1Base",
|
546 |
+
"properties": {
|
547 |
+
"cnr_id": "comfy-core",
|
548 |
+
"ver": "0.3.27",
|
549 |
+
"Node name for S&R": "CLIPTextEncodeSDXL"
|
550 |
+
},
|
551 |
+
"widgets_values": [
|
552 |
+
4096,
|
553 |
+
4096,
|
554 |
+
0,
|
555 |
+
0,
|
556 |
+
4096,
|
557 |
+
4096,
|
558 |
+
"blurry, bokeh,",
|
559 |
+
"blurry, bokeh,"
|
560 |
+
],
|
561 |
+
"color": "#322",
|
562 |
+
"bgcolor": "#533"
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"id": 29,
|
566 |
+
"type": "CLIPTextEncodeSDXL",
|
567 |
+
"pos": [
|
568 |
+
1001,
|
569 |
+
383
|
570 |
+
],
|
571 |
+
"size": [
|
572 |
+
400,
|
573 |
+
270.0000305175781
|
574 |
+
],
|
575 |
+
"flags": {},
|
576 |
+
"order": 12,
|
577 |
+
"mode": 0,
|
578 |
+
"inputs": [
|
579 |
+
{
|
580 |
+
"name": "clip",
|
581 |
+
"type": "CLIP",
|
582 |
+
"link": 83
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"name": "text_g",
|
586 |
+
"type": "STRING",
|
587 |
+
"widget": {
|
588 |
+
"name": "text_g"
|
589 |
+
},
|
590 |
+
"link": 228
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"name": "text_l",
|
594 |
+
"type": "STRING",
|
595 |
+
"widget": {
|
596 |
+
"name": "text_l"
|
597 |
+
},
|
598 |
+
"link": 229
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"name": "width",
|
602 |
+
"type": "INT",
|
603 |
+
"widget": {
|
604 |
+
"name": "width"
|
605 |
+
},
|
606 |
+
"link": 230
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"name": "height",
|
610 |
+
"type": "INT",
|
611 |
+
"widget": {
|
612 |
+
"name": "height"
|
613 |
+
},
|
614 |
+
"link": 231
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"name": "target_width",
|
618 |
+
"type": "INT",
|
619 |
+
"widget": {
|
620 |
+
"name": "target_width"
|
621 |
+
},
|
622 |
+
"link": 232
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"name": "target_height",
|
626 |
+
"type": "INT",
|
627 |
+
"widget": {
|
628 |
+
"name": "target_height"
|
629 |
+
},
|
630 |
+
"link": 233
|
631 |
+
}
|
632 |
+
],
|
633 |
+
"outputs": [
|
634 |
+
{
|
635 |
+
"name": "CONDITIONING",
|
636 |
+
"shape": 3,
|
637 |
+
"type": "CONDITIONING",
|
638 |
+
"slot_index": 0,
|
639 |
+
"links": [
|
640 |
+
158,
|
641 |
+
162
|
642 |
+
]
|
643 |
+
}
|
644 |
+
],
|
645 |
+
"title": "positivePromt_sdxl1Base",
|
646 |
+
"properties": {
|
647 |
+
"cnr_id": "comfy-core",
|
648 |
+
"ver": "0.3.27",
|
649 |
+
"Node name for S&R": "CLIPTextEncodeSDXL"
|
650 |
+
},
|
651 |
+
"widgets_values": [
|
652 |
+
4096,
|
653 |
+
4096,
|
654 |
+
0,
|
655 |
+
0,
|
656 |
+
4096,
|
657 |
+
4096,
|
658 |
+
"photo of beautiful 24 years woman, closeup, peach fuzz, skin pores, teal punk rocker hair style, sitting on a couch",
|
659 |
+
"photo of beautiful 24 years woman, closeup, peach fuzz, skin pores, teal punk rocker hair style, sitting on a couch"
|
660 |
+
],
|
661 |
+
"color": "#232",
|
662 |
+
"bgcolor": "#353"
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"id": 67,
|
666 |
+
"type": "KSamplerAdvanced",
|
667 |
+
"pos": [
|
668 |
+
1571,
|
669 |
+
209
|
670 |
+
],
|
671 |
+
"size": [
|
672 |
+
315,
|
673 |
+
546
|
674 |
+
],
|
675 |
+
"flags": {
|
676 |
+
"collapsed": false
|
677 |
+
},
|
678 |
+
"order": 14,
|
679 |
+
"mode": 0,
|
680 |
+
"inputs": [
|
681 |
+
{
|
682 |
+
"name": "model",
|
683 |
+
"type": "MODEL",
|
684 |
+
"link": 156
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"name": "positive",
|
688 |
+
"type": "CONDITIONING",
|
689 |
+
"link": 158
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"name": "negative",
|
693 |
+
"type": "CONDITIONING",
|
694 |
+
"link": 159
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"name": "latent_image",
|
698 |
+
"type": "LATENT",
|
699 |
+
"link": 243
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"name": "noise_seed",
|
703 |
+
"type": "INT",
|
704 |
+
"widget": {
|
705 |
+
"name": "noise_seed"
|
706 |
+
},
|
707 |
+
"link": 247
|
708 |
+
}
|
709 |
+
],
|
710 |
+
"outputs": [
|
711 |
+
{
|
712 |
+
"name": "LATENT",
|
713 |
+
"shape": 3,
|
714 |
+
"type": "LATENT",
|
715 |
+
"slot_index": 0,
|
716 |
+
"links": [
|
717 |
+
261
|
718 |
+
]
|
719 |
+
}
|
720 |
+
],
|
721 |
+
"properties": {
|
722 |
+
"cnr_id": "comfy-core",
|
723 |
+
"ver": "0.3.27",
|
724 |
+
"Node name for S&R": "KSamplerAdvanced"
|
725 |
+
},
|
726 |
+
"widgets_values": [
|
727 |
+
"enable",
|
728 |
+
987654321357988,
|
729 |
+
"increment",
|
730 |
+
6,
|
731 |
+
1.1,
|
732 |
+
"dpmpp_2m_sde",
|
733 |
+
"karras",
|
734 |
+
0,
|
735 |
+
12,
|
736 |
+
"enable"
|
737 |
+
]
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"id": 68,
|
741 |
+
"type": "KSamplerAdvanced",
|
742 |
+
"pos": [
|
743 |
+
2263,
|
744 |
+
212
|
745 |
+
],
|
746 |
+
"size": [
|
747 |
+
315,
|
748 |
+
546
|
749 |
+
],
|
750 |
+
"flags": {},
|
751 |
+
"order": 16,
|
752 |
+
"mode": 0,
|
753 |
+
"inputs": [
|
754 |
+
{
|
755 |
+
"name": "model",
|
756 |
+
"type": "MODEL",
|
757 |
+
"link": 161
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"name": "positive",
|
761 |
+
"type": "CONDITIONING",
|
762 |
+
"link": 162
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"name": "negative",
|
766 |
+
"type": "CONDITIONING",
|
767 |
+
"link": 163
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"name": "latent_image",
|
771 |
+
"type": "LATENT",
|
772 |
+
"link": 246
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"name": "noise_seed",
|
776 |
+
"type": "INT",
|
777 |
+
"widget": {
|
778 |
+
"name": "noise_seed"
|
779 |
+
},
|
780 |
+
"link": 248
|
781 |
+
}
|
782 |
+
],
|
783 |
+
"outputs": [
|
784 |
+
{
|
785 |
+
"name": "LATENT",
|
786 |
+
"shape": 3,
|
787 |
+
"type": "LATENT",
|
788 |
+
"slot_index": 0,
|
789 |
+
"links": [
|
790 |
+
189
|
791 |
+
]
|
792 |
+
}
|
793 |
+
],
|
794 |
+
"properties": {
|
795 |
+
"cnr_id": "comfy-core",
|
796 |
+
"ver": "0.3.27",
|
797 |
+
"Node name for S&R": "KSamplerAdvanced"
|
798 |
+
},
|
799 |
+
"widgets_values": [
|
800 |
+
"enable",
|
801 |
+
987654321357988,
|
802 |
+
"increment",
|
803 |
+
12,
|
804 |
+
1.1,
|
805 |
+
"dpmpp_2m_sde",
|
806 |
+
"karras",
|
807 |
+
5,
|
808 |
+
10000,
|
809 |
+
"disable"
|
810 |
+
]
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"id": 88,
|
814 |
+
"type": "PrimitiveNode",
|
815 |
+
"pos": [
|
816 |
+
655,
|
817 |
+
488
|
818 |
+
],
|
819 |
+
"size": [
|
820 |
+
210,
|
821 |
+
82
|
822 |
+
],
|
823 |
+
"flags": {},
|
824 |
+
"order": 2,
|
825 |
+
"mode": 0,
|
826 |
+
"inputs": [],
|
827 |
+
"outputs": [
|
828 |
+
{
|
829 |
+
"name": "INT",
|
830 |
+
"type": "INT",
|
831 |
+
"widget": {
|
832 |
+
"name": "width"
|
833 |
+
},
|
834 |
+
"slot_index": 0,
|
835 |
+
"links": [
|
836 |
+
230,
|
837 |
+
231,
|
838 |
+
232,
|
839 |
+
233,
|
840 |
+
234,
|
841 |
+
235,
|
842 |
+
236,
|
843 |
+
237
|
844 |
+
]
|
845 |
+
}
|
846 |
+
],
|
847 |
+
"properties": {
|
848 |
+
"Run widget replace on values": false
|
849 |
+
},
|
850 |
+
"widgets_values": [
|
851 |
+
4096,
|
852 |
+
"fixed"
|
853 |
+
]
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"id": 93,
|
857 |
+
"type": "LatentUpscaleBy",
|
858 |
+
"pos": [
|
859 |
+
1920,
|
860 |
+
87
|
861 |
+
],
|
862 |
+
"size": [
|
863 |
+
315,
|
864 |
+
82
|
865 |
+
],
|
866 |
+
"flags": {},
|
867 |
+
"order": 15,
|
868 |
+
"mode": 0,
|
869 |
+
"inputs": [
|
870 |
+
{
|
871 |
+
"name": "samples",
|
872 |
+
"type": "LATENT",
|
873 |
+
"link": 261
|
874 |
+
}
|
875 |
+
],
|
876 |
+
"outputs": [
|
877 |
+
{
|
878 |
+
"name": "LATENT",
|
879 |
+
"shape": 3,
|
880 |
+
"type": "LATENT",
|
881 |
+
"slot_index": 0,
|
882 |
+
"links": [
|
883 |
+
246
|
884 |
+
]
|
885 |
+
}
|
886 |
+
],
|
887 |
+
"properties": {
|
888 |
+
"cnr_id": "comfy-core",
|
889 |
+
"ver": "0.3.27",
|
890 |
+
"Node name for S&R": "LatentUpscaleBy"
|
891 |
+
},
|
892 |
+
"widgets_values": [
|
893 |
+
"nearest-exact",
|
894 |
+
2
|
895 |
+
]
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"id": 46,
|
899 |
+
"type": "Reroute",
|
900 |
+
"pos": [
|
901 |
+
840,
|
902 |
+
10
|
903 |
+
],
|
904 |
+
"size": [
|
905 |
+
75,
|
906 |
+
26
|
907 |
+
],
|
908 |
+
"flags": {},
|
909 |
+
"order": 4,
|
910 |
+
"mode": 0,
|
911 |
+
"inputs": [
|
912 |
+
{
|
913 |
+
"name": "",
|
914 |
+
"type": "*",
|
915 |
+
"link": 262
|
916 |
+
}
|
917 |
+
],
|
918 |
+
"outputs": [
|
919 |
+
{
|
920 |
+
"name": "",
|
921 |
+
"type": "MODEL",
|
922 |
+
"slot_index": 0,
|
923 |
+
"links": [
|
924 |
+
156,
|
925 |
+
161
|
926 |
+
]
|
927 |
+
}
|
928 |
+
],
|
929 |
+
"properties": {
|
930 |
+
"showOutputText": false,
|
931 |
+
"horizontal": false
|
932 |
+
}
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"id": 20,
|
936 |
+
"type": "CheckpointLoaderSimple",
|
937 |
+
"pos": [
|
938 |
+
-474,
|
939 |
+
-165
|
940 |
+
],
|
941 |
+
"size": [
|
942 |
+
645.7987060546875,
|
943 |
+
98
|
944 |
+
],
|
945 |
+
"flags": {},
|
946 |
+
"order": 3,
|
947 |
+
"mode": 0,
|
948 |
+
"inputs": [],
|
949 |
+
"outputs": [
|
950 |
+
{
|
951 |
+
"name": "MODEL",
|
952 |
+
"shape": 3,
|
953 |
+
"type": "MODEL",
|
954 |
+
"slot_index": 0,
|
955 |
+
"links": [
|
956 |
+
262
|
957 |
+
]
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"name": "CLIP",
|
961 |
+
"shape": 3,
|
962 |
+
"type": "CLIP",
|
963 |
+
"slot_index": 1,
|
964 |
+
"links": [
|
965 |
+
82
|
966 |
+
]
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"name": "VAE",
|
970 |
+
"shape": 3,
|
971 |
+
"type": "VAE",
|
972 |
+
"slot_index": 2,
|
973 |
+
"links": [
|
974 |
+
150,
|
975 |
+
244
|
976 |
+
]
|
977 |
+
}
|
978 |
+
],
|
979 |
+
"properties": {
|
980 |
+
"cnr_id": "comfy-core",
|
981 |
+
"ver": "0.3.27",
|
982 |
+
"Node name for S&R": "CheckpointLoaderSimple"
|
983 |
+
},
|
984 |
+
"widgets_values": [
|
985 |
+
"turbovisionxlSuperFastXLBasedOnNew_alphaV0101Bakedvae.safetensors"
|
986 |
+
]
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"id": 77,
|
990 |
+
"type": "VAEDecode",
|
991 |
+
"pos": [
|
992 |
+
2645.012939453125,
|
993 |
+
381.77679443359375
|
994 |
+
],
|
995 |
+
"size": [
|
996 |
+
210,
|
997 |
+
46
|
998 |
+
],
|
999 |
+
"flags": {
|
1000 |
+
"collapsed": true
|
1001 |
+
},
|
1002 |
+
"order": 17,
|
1003 |
+
"mode": 0,
|
1004 |
+
"inputs": [
|
1005 |
+
{
|
1006 |
+
"name": "samples",
|
1007 |
+
"type": "LATENT",
|
1008 |
+
"link": 189
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"name": "vae",
|
1012 |
+
"type": "VAE",
|
1013 |
+
"link": 188
|
1014 |
+
}
|
1015 |
+
],
|
1016 |
+
"outputs": [
|
1017 |
+
{
|
1018 |
+
"name": "IMAGE",
|
1019 |
+
"shape": 3,
|
1020 |
+
"type": "IMAGE",
|
1021 |
+
"slot_index": 0,
|
1022 |
+
"links": [
|
1023 |
+
190,
|
1024 |
+
263
|
1025 |
+
]
|
1026 |
+
}
|
1027 |
+
],
|
1028 |
+
"properties": {
|
1029 |
+
"cnr_id": "comfy-core",
|
1030 |
+
"ver": "0.3.27",
|
1031 |
+
"Node name for S&R": "VAEDecode"
|
1032 |
+
},
|
1033 |
+
"widgets_values": []
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"id": 99,
|
1037 |
+
"type": "PreviewImage",
|
1038 |
+
"pos": [
|
1039 |
+
2965.96533203125,
|
1040 |
+
326.4072570800781
|
1041 |
+
],
|
1042 |
+
"size": [
|
1043 |
+
584.3117065429688,
|
1044 |
+
613.8179931640625
|
1045 |
+
],
|
1046 |
+
"flags": {},
|
1047 |
+
"order": 18,
|
1048 |
+
"mode": 0,
|
1049 |
+
"inputs": [
|
1050 |
+
{
|
1051 |
+
"name": "images",
|
1052 |
+
"type": "IMAGE",
|
1053 |
+
"link": 263
|
1054 |
+
}
|
1055 |
+
],
|
1056 |
+
"outputs": [],
|
1057 |
+
"properties": {
|
1058 |
+
"cnr_id": "comfy-core",
|
1059 |
+
"ver": "0.3.27",
|
1060 |
+
"Node name for S&R": "PreviewImage"
|
1061 |
+
},
|
1062 |
+
"widgets_values": [
|
1063 |
+
""
|
1064 |
+
]
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"id": 85,
|
1068 |
+
"type": "Vyro Pipe Input V2",
|
1069 |
+
"pos": [
|
1070 |
+
-811,
|
1071 |
+
200
|
1072 |
+
],
|
1073 |
+
"size": [
|
1074 |
+
400,
|
1075 |
+
748
|
1076 |
+
],
|
1077 |
+
"flags": {},
|
1078 |
+
"order": 7,
|
1079 |
+
"mode": 0,
|
1080 |
+
"inputs": [
|
1081 |
+
{
|
1082 |
+
"name": "vae",
|
1083 |
+
"type": "VAE",
|
1084 |
+
"link": 244
|
1085 |
+
}
|
1086 |
+
],
|
1087 |
+
"outputs": [
|
1088 |
+
{
|
1089 |
+
"name": "vyro_params",
|
1090 |
+
"shape": 3,
|
1091 |
+
"type": "VYRO_PARAMS",
|
1092 |
+
"slot_index": 0,
|
1093 |
+
"links": [
|
1094 |
+
226
|
1095 |
+
]
|
1096 |
+
}
|
1097 |
+
],
|
1098 |
+
"properties": {
|
1099 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
1100 |
+
"ver": "987bd627ca63ee6815b42082eccf1b2199bf53ed",
|
1101 |
+
"Node name for S&R": "Vyro Pipe Input V2"
|
1102 |
+
},
|
1103 |
+
"widgets_values": [
|
1104 |
+
"digital drawing of cyberpunk skull with armor, maximalist detailing, colorful, vibrant, --ar 9:16 --chaos 30",
|
1105 |
+
"t2i",
|
1106 |
+
"perlin1",
|
1107 |
+
"trees",
|
1108 |
+
1,
|
1109 |
+
7.5,
|
1110 |
+
10,
|
1111 |
+
512,
|
1112 |
+
512,
|
1113 |
+
3465171079,
|
1114 |
+
"randomize",
|
1115 |
+
"",
|
1116 |
+
1,
|
1117 |
+
0.25000000000000006,
|
1118 |
+
1,
|
1119 |
+
1
|
1120 |
+
]
|
1121 |
+
}
|
1122 |
+
],
|
1123 |
+
"links": [
|
1124 |
+
[
|
1125 |
+
82,
|
1126 |
+
20,
|
1127 |
+
1,
|
1128 |
+
45,
|
1129 |
+
0,
|
1130 |
+
"*"
|
1131 |
+
],
|
1132 |
+
[
|
1133 |
+
83,
|
1134 |
+
45,
|
1135 |
+
0,
|
1136 |
+
29,
|
1137 |
+
0,
|
1138 |
+
"CLIP"
|
1139 |
+
],
|
1140 |
+
[
|
1141 |
+
84,
|
1142 |
+
45,
|
1143 |
+
0,
|
1144 |
+
30,
|
1145 |
+
0,
|
1146 |
+
"CLIP"
|
1147 |
+
],
|
1148 |
+
[
|
1149 |
+
150,
|
1150 |
+
20,
|
1151 |
+
2,
|
1152 |
+
66,
|
1153 |
+
0,
|
1154 |
+
"*"
|
1155 |
+
],
|
1156 |
+
[
|
1157 |
+
156,
|
1158 |
+
46,
|
1159 |
+
0,
|
1160 |
+
67,
|
1161 |
+
0,
|
1162 |
+
"MODEL"
|
1163 |
+
],
|
1164 |
+
[
|
1165 |
+
158,
|
1166 |
+
29,
|
1167 |
+
0,
|
1168 |
+
67,
|
1169 |
+
1,
|
1170 |
+
"CONDITIONING"
|
1171 |
+
],
|
1172 |
+
[
|
1173 |
+
159,
|
1174 |
+
30,
|
1175 |
+
0,
|
1176 |
+
67,
|
1177 |
+
2,
|
1178 |
+
"CONDITIONING"
|
1179 |
+
],
|
1180 |
+
[
|
1181 |
+
161,
|
1182 |
+
46,
|
1183 |
+
0,
|
1184 |
+
68,
|
1185 |
+
0,
|
1186 |
+
"MODEL"
|
1187 |
+
],
|
1188 |
+
[
|
1189 |
+
162,
|
1190 |
+
29,
|
1191 |
+
0,
|
1192 |
+
68,
|
1193 |
+
1,
|
1194 |
+
"CONDITIONING"
|
1195 |
+
],
|
1196 |
+
[
|
1197 |
+
163,
|
1198 |
+
30,
|
1199 |
+
0,
|
1200 |
+
68,
|
1201 |
+
2,
|
1202 |
+
"CONDITIONING"
|
1203 |
+
],
|
1204 |
+
[
|
1205 |
+
188,
|
1206 |
+
66,
|
1207 |
+
0,
|
1208 |
+
77,
|
1209 |
+
1,
|
1210 |
+
"VAE"
|
1211 |
+
],
|
1212 |
+
[
|
1213 |
+
189,
|
1214 |
+
68,
|
1215 |
+
0,
|
1216 |
+
77,
|
1217 |
+
0,
|
1218 |
+
"LATENT"
|
1219 |
+
],
|
1220 |
+
[
|
1221 |
+
226,
|
1222 |
+
85,
|
1223 |
+
0,
|
1224 |
+
86,
|
1225 |
+
0,
|
1226 |
+
"VYRO_PARAMS"
|
1227 |
+
],
|
1228 |
+
[
|
1229 |
+
227,
|
1230 |
+
86,
|
1231 |
+
1,
|
1232 |
+
87,
|
1233 |
+
0,
|
1234 |
+
"*"
|
1235 |
+
],
|
1236 |
+
[
|
1237 |
+
228,
|
1238 |
+
87,
|
1239 |
+
0,
|
1240 |
+
29,
|
1241 |
+
1,
|
1242 |
+
"STRING"
|
1243 |
+
],
|
1244 |
+
[
|
1245 |
+
229,
|
1246 |
+
87,
|
1247 |
+
0,
|
1248 |
+
29,
|
1249 |
+
2,
|
1250 |
+
"STRING"
|
1251 |
+
],
|
1252 |
+
[
|
1253 |
+
230,
|
1254 |
+
88,
|
1255 |
+
0,
|
1256 |
+
29,
|
1257 |
+
3,
|
1258 |
+
"INT"
|
1259 |
+
],
|
1260 |
+
[
|
1261 |
+
231,
|
1262 |
+
88,
|
1263 |
+
0,
|
1264 |
+
29,
|
1265 |
+
4,
|
1266 |
+
"INT"
|
1267 |
+
],
|
1268 |
+
[
|
1269 |
+
232,
|
1270 |
+
88,
|
1271 |
+
0,
|
1272 |
+
29,
|
1273 |
+
5,
|
1274 |
+
"INT"
|
1275 |
+
],
|
1276 |
+
[
|
1277 |
+
233,
|
1278 |
+
88,
|
1279 |
+
0,
|
1280 |
+
29,
|
1281 |
+
6,
|
1282 |
+
"INT"
|
1283 |
+
],
|
1284 |
+
[
|
1285 |
+
234,
|
1286 |
+
88,
|
1287 |
+
0,
|
1288 |
+
30,
|
1289 |
+
3,
|
1290 |
+
"INT"
|
1291 |
+
],
|
1292 |
+
[
|
1293 |
+
235,
|
1294 |
+
88,
|
1295 |
+
0,
|
1296 |
+
30,
|
1297 |
+
4,
|
1298 |
+
"INT"
|
1299 |
+
],
|
1300 |
+
[
|
1301 |
+
236,
|
1302 |
+
88,
|
1303 |
+
0,
|
1304 |
+
30,
|
1305 |
+
5,
|
1306 |
+
"INT"
|
1307 |
+
],
|
1308 |
+
[
|
1309 |
+
237,
|
1310 |
+
88,
|
1311 |
+
0,
|
1312 |
+
30,
|
1313 |
+
6,
|
1314 |
+
"INT"
|
1315 |
+
],
|
1316 |
+
[
|
1317 |
+
238,
|
1318 |
+
86,
|
1319 |
+
2,
|
1320 |
+
89,
|
1321 |
+
0,
|
1322 |
+
"*"
|
1323 |
+
],
|
1324 |
+
[
|
1325 |
+
239,
|
1326 |
+
89,
|
1327 |
+
0,
|
1328 |
+
30,
|
1329 |
+
1,
|
1330 |
+
"STRING"
|
1331 |
+
],
|
1332 |
+
[
|
1333 |
+
240,
|
1334 |
+
89,
|
1335 |
+
0,
|
1336 |
+
30,
|
1337 |
+
2,
|
1338 |
+
"STRING"
|
1339 |
+
],
|
1340 |
+
[
|
1341 |
+
241,
|
1342 |
+
86,
|
1343 |
+
7,
|
1344 |
+
92,
|
1345 |
+
0,
|
1346 |
+
"INT"
|
1347 |
+
],
|
1348 |
+
[
|
1349 |
+
242,
|
1350 |
+
86,
|
1351 |
+
8,
|
1352 |
+
92,
|
1353 |
+
1,
|
1354 |
+
"INT"
|
1355 |
+
],
|
1356 |
+
[
|
1357 |
+
243,
|
1358 |
+
92,
|
1359 |
+
0,
|
1360 |
+
67,
|
1361 |
+
3,
|
1362 |
+
"LATENT"
|
1363 |
+
],
|
1364 |
+
[
|
1365 |
+
244,
|
1366 |
+
20,
|
1367 |
+
2,
|
1368 |
+
85,
|
1369 |
+
0,
|
1370 |
+
"VAE"
|
1371 |
+
],
|
1372 |
+
[
|
1373 |
+
246,
|
1374 |
+
93,
|
1375 |
+
0,
|
1376 |
+
68,
|
1377 |
+
3,
|
1378 |
+
"LATENT"
|
1379 |
+
],
|
1380 |
+
[
|
1381 |
+
247,
|
1382 |
+
86,
|
1383 |
+
9,
|
1384 |
+
67,
|
1385 |
+
4,
|
1386 |
+
"INT"
|
1387 |
+
],
|
1388 |
+
[
|
1389 |
+
248,
|
1390 |
+
86,
|
1391 |
+
9,
|
1392 |
+
68,
|
1393 |
+
4,
|
1394 |
+
"INT"
|
1395 |
+
],
|
1396 |
+
[
|
1397 |
+
261,
|
1398 |
+
67,
|
1399 |
+
0,
|
1400 |
+
93,
|
1401 |
+
0,
|
1402 |
+
"LATENT"
|
1403 |
+
],
|
1404 |
+
[
|
1405 |
+
262,
|
1406 |
+
20,
|
1407 |
+
0,
|
1408 |
+
46,
|
1409 |
+
0,
|
1410 |
+
"*"
|
1411 |
+
],
|
1412 |
+
[
|
1413 |
+
263,
|
1414 |
+
77,
|
1415 |
+
0,
|
1416 |
+
99,
|
1417 |
+
0,
|
1418 |
+
"IMAGE"
|
1419 |
+
]
|
1420 |
+
],
|
1421 |
+
"groups": [],
|
1422 |
+
"config": {},
|
1423 |
+
"extra": {
|
1424 |
+
"ds": {
|
1425 |
+
"scale": 0.15030096025614706,
|
1426 |
+
"offset": [
|
1427 |
+
6414.9972594019255,
|
1428 |
+
3091.1902356429177
|
1429 |
+
]
|
1430 |
+
}
|
1431 |
+
},
|
1432 |
+
"version": 0.4
|
1433 |
+
}
|
Imagine/imagine-v5-ultra/comfy/__pycache__/checkpoint_pickle.cpython-311.pyc
ADDED
Binary file (1.12 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/cli_args.cpython-311.pyc
ADDED
Binary file (18.2 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/clip_model.cpython-311.pyc
ADDED
Binary file (21.2 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/clip_vision.cpython-311.pyc
ADDED
Binary file (12.8 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/conds.cpython-311.pyc
ADDED
Binary file (5.33 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/controlnet.cpython-311.pyc
ADDED
Binary file (53.9 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/diffusers_convert.cpython-311.pyc
ADDED
Binary file (9.6 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/diffusers_load.cpython-311.pyc
ADDED
Binary file (2.41 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/float.cpython-311.pyc
ADDED
Binary file (4.1 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/gligen.cpython-311.pyc
ADDED
Binary file (22.1 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/hooks.cpython-311.pyc
ADDED
Binary file (43.1 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/latent_formats.cpython-311.pyc
ADDED
Binary file (24.7 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/lora.cpython-311.pyc
ADDED
Binary file (39.4 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/lora_convert.cpython-311.pyc
ADDED
Binary file (1.29 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/model_base.cpython-311.pyc
ADDED
Binary file (81.4 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/model_detection.cpython-311.pyc
ADDED
Binary file (41.9 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/model_management.cpython-311.pyc
ADDED
Binary file (57.6 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/model_patcher.cpython-311.pyc
ADDED
Binary file (73.2 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/model_sampling.cpython-311.pyc
ADDED
Binary file (23.9 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/ops.cpython-311.pyc
ADDED
Binary file (27.2 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/options.cpython-311.pyc
ADDED
Binary file (361 Bytes). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/patcher_extension.cpython-311.pyc
ADDED
Binary file (10.7 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/sample.cpython-311.pyc
ADDED
Binary file (4.97 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/sampler_helpers.cpython-311.pyc
ADDED
Binary file (9.21 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/samplers.cpython-311.pyc
ADDED
Binary file (64.7 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/sd.cpython-311.pyc
ADDED
Binary file (78.1 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/sd1_clip.cpython-311.pyc
ADDED
Binary file (38.9 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/sdxl_clip.cpython-311.pyc
ADDED
Binary file (10.6 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/supported_models.cpython-311.pyc
ADDED
Binary file (49 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/supported_models_base.cpython-311.pyc
ADDED
Binary file (6.93 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (62.6 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/checkpoint_pickle.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
|
3 |
+
load = pickle.load
|
4 |
+
|
5 |
+
class Empty:
|
6 |
+
pass
|
7 |
+
|
8 |
+
class Unpickler(pickle.Unpickler):
|
9 |
+
def find_class(self, module, name):
|
10 |
+
#TODO: safe unpickle
|
11 |
+
if module.startswith("pytorch_lightning"):
|
12 |
+
return Empty
|
13 |
+
return super().find_class(module, name)
|
Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/cldm.cpython-311.pyc
ADDED
Binary file (22.9 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/control_types.cpython-311.pyc
ADDED
Binary file (420 Bytes). View file
|
|
Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/dit_embedder.cpython-311.pyc
ADDED
Binary file (5.72 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/mmdit.cpython-311.pyc
ADDED
Binary file (4 kB). View file
|
|
Imagine/imagine-v5-ultra/comfy/cldm/cldm.py
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#taken from: https://github.com/lllyasviel/ControlNet
|
2 |
+
#and modified
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from ..ldm.modules.diffusionmodules.util import (
|
8 |
+
timestep_embedding,
|
9 |
+
)
|
10 |
+
|
11 |
+
from ..ldm.modules.attention import SpatialTransformer
|
12 |
+
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
13 |
+
from ..ldm.util import exists
|
14 |
+
from .control_types import UNION_CONTROLNET_TYPES
|
15 |
+
from collections import OrderedDict
|
16 |
+
import comfy.ops
|
17 |
+
from comfy.ldm.modules.attention import optimized_attention
|
18 |
+
|
19 |
+
class OptimizedAttention(nn.Module):
|
20 |
+
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
21 |
+
super().__init__()
|
22 |
+
self.heads = nhead
|
23 |
+
self.c = c
|
24 |
+
|
25 |
+
self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
|
26 |
+
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = self.in_proj(x)
|
30 |
+
q, k, v = x.split(self.c, dim=2)
|
31 |
+
out = optimized_attention(q, k, v, self.heads)
|
32 |
+
return self.out_proj(out)
|
33 |
+
|
34 |
+
class QuickGELU(nn.Module):
|
35 |
+
def forward(self, x: torch.Tensor):
|
36 |
+
return x * torch.sigmoid(1.702 * x)
|
37 |
+
|
38 |
+
class ResBlockUnionControlnet(nn.Module):
|
39 |
+
def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
|
40 |
+
super().__init__()
|
41 |
+
self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
|
42 |
+
self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
43 |
+
self.mlp = nn.Sequential(
|
44 |
+
OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
|
45 |
+
("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
|
46 |
+
self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
47 |
+
|
48 |
+
def attention(self, x: torch.Tensor):
|
49 |
+
return self.attn(x)
|
50 |
+
|
51 |
+
def forward(self, x: torch.Tensor):
|
52 |
+
x = x + self.attention(self.ln_1(x))
|
53 |
+
x = x + self.mlp(self.ln_2(x))
|
54 |
+
return x
|
55 |
+
|
56 |
+
class ControlledUnetModel(UNetModel):
|
57 |
+
#implemented in the ldm unet
|
58 |
+
pass
|
59 |
+
|
60 |
+
class ControlNet(nn.Module):
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
image_size,
|
64 |
+
in_channels,
|
65 |
+
model_channels,
|
66 |
+
hint_channels,
|
67 |
+
num_res_blocks,
|
68 |
+
dropout=0,
|
69 |
+
channel_mult=(1, 2, 4, 8),
|
70 |
+
conv_resample=True,
|
71 |
+
dims=2,
|
72 |
+
num_classes=None,
|
73 |
+
use_checkpoint=False,
|
74 |
+
dtype=torch.float32,
|
75 |
+
num_heads=-1,
|
76 |
+
num_head_channels=-1,
|
77 |
+
num_heads_upsample=-1,
|
78 |
+
use_scale_shift_norm=False,
|
79 |
+
resblock_updown=False,
|
80 |
+
use_new_attention_order=False,
|
81 |
+
use_spatial_transformer=False, # custom transformer support
|
82 |
+
transformer_depth=1, # custom transformer support
|
83 |
+
context_dim=None, # custom transformer support
|
84 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
85 |
+
legacy=True,
|
86 |
+
disable_self_attentions=None,
|
87 |
+
num_attention_blocks=None,
|
88 |
+
disable_middle_self_attn=False,
|
89 |
+
use_linear_in_transformer=False,
|
90 |
+
adm_in_channels=None,
|
91 |
+
transformer_depth_middle=None,
|
92 |
+
transformer_depth_output=None,
|
93 |
+
attn_precision=None,
|
94 |
+
union_controlnet_num_control_type=None,
|
95 |
+
device=None,
|
96 |
+
operations=comfy.ops.disable_weight_init,
|
97 |
+
**kwargs,
|
98 |
+
):
|
99 |
+
super().__init__()
|
100 |
+
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
101 |
+
if use_spatial_transformer:
|
102 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
103 |
+
|
104 |
+
if context_dim is not None:
|
105 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
106 |
+
# from omegaconf.listconfig import ListConfig
|
107 |
+
# if type(context_dim) == ListConfig:
|
108 |
+
# context_dim = list(context_dim)
|
109 |
+
|
110 |
+
if num_heads_upsample == -1:
|
111 |
+
num_heads_upsample = num_heads
|
112 |
+
|
113 |
+
if num_heads == -1:
|
114 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
115 |
+
|
116 |
+
if num_head_channels == -1:
|
117 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
118 |
+
|
119 |
+
self.dims = dims
|
120 |
+
self.image_size = image_size
|
121 |
+
self.in_channels = in_channels
|
122 |
+
self.model_channels = model_channels
|
123 |
+
|
124 |
+
if isinstance(num_res_blocks, int):
|
125 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
126 |
+
else:
|
127 |
+
if len(num_res_blocks) != len(channel_mult):
|
128 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
129 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
130 |
+
self.num_res_blocks = num_res_blocks
|
131 |
+
|
132 |
+
if disable_self_attentions is not None:
|
133 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
134 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
135 |
+
if num_attention_blocks is not None:
|
136 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
137 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
138 |
+
|
139 |
+
transformer_depth = transformer_depth[:]
|
140 |
+
|
141 |
+
self.dropout = dropout
|
142 |
+
self.channel_mult = channel_mult
|
143 |
+
self.conv_resample = conv_resample
|
144 |
+
self.num_classes = num_classes
|
145 |
+
self.use_checkpoint = use_checkpoint
|
146 |
+
self.dtype = dtype
|
147 |
+
self.num_heads = num_heads
|
148 |
+
self.num_head_channels = num_head_channels
|
149 |
+
self.num_heads_upsample = num_heads_upsample
|
150 |
+
self.predict_codebook_ids = n_embed is not None
|
151 |
+
|
152 |
+
time_embed_dim = model_channels * 4
|
153 |
+
self.time_embed = nn.Sequential(
|
154 |
+
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
155 |
+
nn.SiLU(),
|
156 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
157 |
+
)
|
158 |
+
|
159 |
+
if self.num_classes is not None:
|
160 |
+
if isinstance(self.num_classes, int):
|
161 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
162 |
+
elif self.num_classes == "continuous":
|
163 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
164 |
+
elif self.num_classes == "sequential":
|
165 |
+
assert adm_in_channels is not None
|
166 |
+
self.label_emb = nn.Sequential(
|
167 |
+
nn.Sequential(
|
168 |
+
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
169 |
+
nn.SiLU(),
|
170 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
171 |
+
)
|
172 |
+
)
|
173 |
+
else:
|
174 |
+
raise ValueError()
|
175 |
+
|
176 |
+
self.input_blocks = nn.ModuleList(
|
177 |
+
[
|
178 |
+
TimestepEmbedSequential(
|
179 |
+
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
180 |
+
)
|
181 |
+
]
|
182 |
+
)
|
183 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
|
184 |
+
|
185 |
+
self.input_hint_block = TimestepEmbedSequential(
|
186 |
+
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
|
187 |
+
nn.SiLU(),
|
188 |
+
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
|
189 |
+
nn.SiLU(),
|
190 |
+
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
191 |
+
nn.SiLU(),
|
192 |
+
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
|
193 |
+
nn.SiLU(),
|
194 |
+
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
195 |
+
nn.SiLU(),
|
196 |
+
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
|
197 |
+
nn.SiLU(),
|
198 |
+
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
199 |
+
nn.SiLU(),
|
200 |
+
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
201 |
+
)
|
202 |
+
|
203 |
+
self._feature_size = model_channels
|
204 |
+
input_block_chans = [model_channels]
|
205 |
+
ch = model_channels
|
206 |
+
ds = 1
|
207 |
+
for level, mult in enumerate(channel_mult):
|
208 |
+
for nr in range(self.num_res_blocks[level]):
|
209 |
+
layers = [
|
210 |
+
ResBlock(
|
211 |
+
ch,
|
212 |
+
time_embed_dim,
|
213 |
+
dropout,
|
214 |
+
out_channels=mult * model_channels,
|
215 |
+
dims=dims,
|
216 |
+
use_checkpoint=use_checkpoint,
|
217 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
218 |
+
dtype=self.dtype,
|
219 |
+
device=device,
|
220 |
+
operations=operations,
|
221 |
+
)
|
222 |
+
]
|
223 |
+
ch = mult * model_channels
|
224 |
+
num_transformers = transformer_depth.pop(0)
|
225 |
+
if num_transformers > 0:
|
226 |
+
if num_head_channels == -1:
|
227 |
+
dim_head = ch // num_heads
|
228 |
+
else:
|
229 |
+
num_heads = ch // num_head_channels
|
230 |
+
dim_head = num_head_channels
|
231 |
+
if legacy:
|
232 |
+
#num_heads = 1
|
233 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
234 |
+
if exists(disable_self_attentions):
|
235 |
+
disabled_sa = disable_self_attentions[level]
|
236 |
+
else:
|
237 |
+
disabled_sa = False
|
238 |
+
|
239 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
240 |
+
layers.append(
|
241 |
+
SpatialTransformer(
|
242 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
243 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
244 |
+
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
245 |
+
)
|
246 |
+
)
|
247 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
248 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
249 |
+
self._feature_size += ch
|
250 |
+
input_block_chans.append(ch)
|
251 |
+
if level != len(channel_mult) - 1:
|
252 |
+
out_ch = ch
|
253 |
+
self.input_blocks.append(
|
254 |
+
TimestepEmbedSequential(
|
255 |
+
ResBlock(
|
256 |
+
ch,
|
257 |
+
time_embed_dim,
|
258 |
+
dropout,
|
259 |
+
out_channels=out_ch,
|
260 |
+
dims=dims,
|
261 |
+
use_checkpoint=use_checkpoint,
|
262 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
263 |
+
down=True,
|
264 |
+
dtype=self.dtype,
|
265 |
+
device=device,
|
266 |
+
operations=operations
|
267 |
+
)
|
268 |
+
if resblock_updown
|
269 |
+
else Downsample(
|
270 |
+
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
271 |
+
)
|
272 |
+
)
|
273 |
+
)
|
274 |
+
ch = out_ch
|
275 |
+
input_block_chans.append(ch)
|
276 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
277 |
+
ds *= 2
|
278 |
+
self._feature_size += ch
|
279 |
+
|
280 |
+
if num_head_channels == -1:
|
281 |
+
dim_head = ch // num_heads
|
282 |
+
else:
|
283 |
+
num_heads = ch // num_head_channels
|
284 |
+
dim_head = num_head_channels
|
285 |
+
if legacy:
|
286 |
+
#num_heads = 1
|
287 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
288 |
+
mid_block = [
|
289 |
+
ResBlock(
|
290 |
+
ch,
|
291 |
+
time_embed_dim,
|
292 |
+
dropout,
|
293 |
+
dims=dims,
|
294 |
+
use_checkpoint=use_checkpoint,
|
295 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
296 |
+
dtype=self.dtype,
|
297 |
+
device=device,
|
298 |
+
operations=operations
|
299 |
+
)]
|
300 |
+
if transformer_depth_middle >= 0:
|
301 |
+
mid_block += [SpatialTransformer( # always uses a self-attn
|
302 |
+
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
303 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
304 |
+
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
305 |
+
),
|
306 |
+
ResBlock(
|
307 |
+
ch,
|
308 |
+
time_embed_dim,
|
309 |
+
dropout,
|
310 |
+
dims=dims,
|
311 |
+
use_checkpoint=use_checkpoint,
|
312 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
313 |
+
dtype=self.dtype,
|
314 |
+
device=device,
|
315 |
+
operations=operations
|
316 |
+
)]
|
317 |
+
self.middle_block = TimestepEmbedSequential(*mid_block)
|
318 |
+
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
|
319 |
+
self._feature_size += ch
|
320 |
+
|
321 |
+
if union_controlnet_num_control_type is not None:
|
322 |
+
self.num_control_type = union_controlnet_num_control_type
|
323 |
+
num_trans_channel = 320
|
324 |
+
num_trans_head = 8
|
325 |
+
num_trans_layer = 1
|
326 |
+
num_proj_channel = 320
|
327 |
+
# task_scale_factor = num_trans_channel ** 0.5
|
328 |
+
self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device))
|
329 |
+
|
330 |
+
self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)])
|
331 |
+
self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device)
|
332 |
+
#-----------------------------------------------------------------------------------------------------
|
333 |
+
|
334 |
+
control_add_embed_dim = 256
|
335 |
+
class ControlAddEmbedding(nn.Module):
|
336 |
+
def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None):
|
337 |
+
super().__init__()
|
338 |
+
self.num_control_type = num_control_type
|
339 |
+
self.in_dim = in_dim
|
340 |
+
self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
|
341 |
+
self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
|
342 |
+
def forward(self, control_type, dtype, device):
|
343 |
+
c_type = torch.zeros((self.num_control_type,), device=device)
|
344 |
+
c_type[control_type] = 1.0
|
345 |
+
c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
|
346 |
+
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
|
347 |
+
|
348 |
+
self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
|
349 |
+
else:
|
350 |
+
self.task_embedding = None
|
351 |
+
self.control_add_embedding = None
|
352 |
+
|
353 |
+
def union_controlnet_merge(self, hint, control_type, emb, context):
|
354 |
+
# Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
|
355 |
+
inputs = []
|
356 |
+
condition_list = []
|
357 |
+
|
358 |
+
for idx in range(min(1, len(control_type))):
|
359 |
+
controlnet_cond = self.input_hint_block(hint[idx], emb, context)
|
360 |
+
feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
|
361 |
+
if idx < len(control_type):
|
362 |
+
feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
|
363 |
+
|
364 |
+
inputs.append(feat_seq.unsqueeze(1))
|
365 |
+
condition_list.append(controlnet_cond)
|
366 |
+
|
367 |
+
x = torch.cat(inputs, dim=1)
|
368 |
+
x = self.transformer_layes(x)
|
369 |
+
controlnet_cond_fuser = None
|
370 |
+
for idx in range(len(control_type)):
|
371 |
+
alpha = self.spatial_ch_projs(x[:, idx])
|
372 |
+
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
|
373 |
+
o = condition_list[idx] + alpha
|
374 |
+
if controlnet_cond_fuser is None:
|
375 |
+
controlnet_cond_fuser = o
|
376 |
+
else:
|
377 |
+
controlnet_cond_fuser += o
|
378 |
+
return controlnet_cond_fuser
|
379 |
+
|
380 |
+
def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
|
381 |
+
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
|
382 |
+
|
383 |
+
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
384 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
385 |
+
emb = self.time_embed(t_emb)
|
386 |
+
|
387 |
+
guided_hint = None
|
388 |
+
if self.control_add_embedding is not None: #Union Controlnet
|
389 |
+
control_type = kwargs.get("control_type", [])
|
390 |
+
|
391 |
+
if any([c >= self.num_control_type for c in control_type]):
|
392 |
+
max_type = max(control_type)
|
393 |
+
max_type_name = {
|
394 |
+
v: k for k, v in UNION_CONTROLNET_TYPES.items()
|
395 |
+
}[max_type]
|
396 |
+
raise ValueError(
|
397 |
+
f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
|
398 |
+
f"({self.num_control_type}) supported.\n" +
|
399 |
+
"Please consider using the ProMax ControlNet Union model.\n" +
|
400 |
+
"https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
|
401 |
+
)
|
402 |
+
|
403 |
+
emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
|
404 |
+
if len(control_type) > 0:
|
405 |
+
if len(hint.shape) < 5:
|
406 |
+
hint = hint.unsqueeze(dim=0)
|
407 |
+
guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
|
408 |
+
|
409 |
+
if guided_hint is None:
|
410 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
411 |
+
|
412 |
+
out_output = []
|
413 |
+
out_middle = []
|
414 |
+
|
415 |
+
if self.num_classes is not None:
|
416 |
+
assert y.shape[0] == x.shape[0]
|
417 |
+
emb = emb + self.label_emb(y)
|
418 |
+
|
419 |
+
h = x
|
420 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
421 |
+
if guided_hint is not None:
|
422 |
+
h = module(h, emb, context)
|
423 |
+
h += guided_hint
|
424 |
+
guided_hint = None
|
425 |
+
else:
|
426 |
+
h = module(h, emb, context)
|
427 |
+
out_output.append(zero_conv(h, emb, context))
|
428 |
+
|
429 |
+
h = self.middle_block(h, emb, context)
|
430 |
+
out_middle.append(self.middle_block_out(h, emb, context))
|
431 |
+
|
432 |
+
return {"middle": out_middle, "output": out_output}
|
433 |
+
|
Imagine/imagine-v5-ultra/comfy/cldm/control_types.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
UNION_CONTROLNET_TYPES = {
|
2 |
+
"openpose": 0,
|
3 |
+
"depth": 1,
|
4 |
+
"hed/pidi/scribble/ted": 2,
|
5 |
+
"canny/lineart/anime_lineart/mlsd": 3,
|
6 |
+
"normal": 4,
|
7 |
+
"segment": 5,
|
8 |
+
"tile": 6,
|
9 |
+
"repaint": 7,
|
10 |
+
}
|
Imagine/imagine-v5-ultra/comfy/cldm/dit_embedder.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torch import Tensor
|
7 |
+
|
8 |
+
from comfy.ldm.modules.diffusionmodules.mmdit import DismantledBlock, PatchEmbed, VectorEmbedder, TimestepEmbedder, get_2d_sincos_pos_embed_torch
|
9 |
+
|
10 |
+
|
11 |
+
class ControlNetEmbedder(nn.Module):
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
img_size: int,
|
16 |
+
patch_size: int,
|
17 |
+
in_chans: int,
|
18 |
+
attention_head_dim: int,
|
19 |
+
num_attention_heads: int,
|
20 |
+
adm_in_channels: int,
|
21 |
+
num_layers: int,
|
22 |
+
main_model_double: int,
|
23 |
+
double_y_emb: bool,
|
24 |
+
device: torch.device,
|
25 |
+
dtype: torch.dtype,
|
26 |
+
pos_embed_max_size: Optional[int] = None,
|
27 |
+
operations = None,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.main_model_double = main_model_double
|
31 |
+
self.dtype = dtype
|
32 |
+
self.hidden_size = num_attention_heads * attention_head_dim
|
33 |
+
self.patch_size = patch_size
|
34 |
+
self.x_embedder = PatchEmbed(
|
35 |
+
img_size=img_size,
|
36 |
+
patch_size=patch_size,
|
37 |
+
in_chans=in_chans,
|
38 |
+
embed_dim=self.hidden_size,
|
39 |
+
strict_img_size=pos_embed_max_size is None,
|
40 |
+
device=device,
|
41 |
+
dtype=dtype,
|
42 |
+
operations=operations,
|
43 |
+
)
|
44 |
+
|
45 |
+
self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations)
|
46 |
+
|
47 |
+
self.double_y_emb = double_y_emb
|
48 |
+
if self.double_y_emb:
|
49 |
+
self.orig_y_embedder = VectorEmbedder(
|
50 |
+
adm_in_channels, self.hidden_size, dtype, device, operations=operations
|
51 |
+
)
|
52 |
+
self.y_embedder = VectorEmbedder(
|
53 |
+
self.hidden_size, self.hidden_size, dtype, device, operations=operations
|
54 |
+
)
|
55 |
+
else:
|
56 |
+
self.y_embedder = VectorEmbedder(
|
57 |
+
adm_in_channels, self.hidden_size, dtype, device, operations=operations
|
58 |
+
)
|
59 |
+
|
60 |
+
self.transformer_blocks = nn.ModuleList(
|
61 |
+
DismantledBlock(
|
62 |
+
hidden_size=self.hidden_size, num_heads=num_attention_heads, qkv_bias=True,
|
63 |
+
dtype=dtype, device=device, operations=operations
|
64 |
+
)
|
65 |
+
for _ in range(num_layers)
|
66 |
+
)
|
67 |
+
|
68 |
+
# self.use_y_embedder = pooled_projection_dim != self.time_text_embed.text_embedder.linear_1.in_features
|
69 |
+
# TODO double check this logic when 8b
|
70 |
+
self.use_y_embedder = True
|
71 |
+
|
72 |
+
self.controlnet_blocks = nn.ModuleList([])
|
73 |
+
for _ in range(len(self.transformer_blocks)):
|
74 |
+
controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
75 |
+
self.controlnet_blocks.append(controlnet_block)
|
76 |
+
|
77 |
+
self.pos_embed_input = PatchEmbed(
|
78 |
+
img_size=img_size,
|
79 |
+
patch_size=patch_size,
|
80 |
+
in_chans=in_chans,
|
81 |
+
embed_dim=self.hidden_size,
|
82 |
+
strict_img_size=False,
|
83 |
+
device=device,
|
84 |
+
dtype=dtype,
|
85 |
+
operations=operations,
|
86 |
+
)
|
87 |
+
|
88 |
+
def forward(
|
89 |
+
self,
|
90 |
+
x: torch.Tensor,
|
91 |
+
timesteps: torch.Tensor,
|
92 |
+
y: Optional[torch.Tensor] = None,
|
93 |
+
context: Optional[torch.Tensor] = None,
|
94 |
+
hint = None,
|
95 |
+
) -> Tuple[Tensor, List[Tensor]]:
|
96 |
+
x_shape = list(x.shape)
|
97 |
+
x = self.x_embedder(x)
|
98 |
+
if not self.double_y_emb:
|
99 |
+
h = (x_shape[-2] + 1) // self.patch_size
|
100 |
+
w = (x_shape[-1] + 1) // self.patch_size
|
101 |
+
x += get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=x.device)
|
102 |
+
c = self.t_embedder(timesteps, dtype=x.dtype)
|
103 |
+
if y is not None and self.y_embedder is not None:
|
104 |
+
if self.double_y_emb:
|
105 |
+
y = self.orig_y_embedder(y)
|
106 |
+
y = self.y_embedder(y)
|
107 |
+
c = c + y
|
108 |
+
|
109 |
+
x = x + self.pos_embed_input(hint)
|
110 |
+
|
111 |
+
block_out = ()
|
112 |
+
|
113 |
+
repeat = math.ceil(self.main_model_double / len(self.transformer_blocks))
|
114 |
+
for i in range(len(self.transformer_blocks)):
|
115 |
+
out = self.transformer_blocks[i](x, c)
|
116 |
+
if not self.double_y_emb:
|
117 |
+
x = out
|
118 |
+
block_out += (self.controlnet_blocks[i](out),) * repeat
|
119 |
+
|
120 |
+
return {"output": block_out}
|
Imagine/imagine-v5-ultra/comfy/cldm/mmdit.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Optional
|
3 |
+
import comfy.ldm.modules.diffusionmodules.mmdit
|
4 |
+
|
5 |
+
class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
num_blocks = None,
|
9 |
+
control_latent_channels = None,
|
10 |
+
dtype = None,
|
11 |
+
device = None,
|
12 |
+
operations = None,
|
13 |
+
**kwargs,
|
14 |
+
):
|
15 |
+
super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
|
16 |
+
# controlnet_blocks
|
17 |
+
self.controlnet_blocks = torch.nn.ModuleList([])
|
18 |
+
for _ in range(len(self.joint_blocks)):
|
19 |
+
self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
|
20 |
+
|
21 |
+
if control_latent_channels is None:
|
22 |
+
control_latent_channels = self.in_channels
|
23 |
+
|
24 |
+
self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
|
25 |
+
None,
|
26 |
+
self.patch_size,
|
27 |
+
control_latent_channels,
|
28 |
+
self.hidden_size,
|
29 |
+
bias=True,
|
30 |
+
strict_img_size=False,
|
31 |
+
dtype=dtype,
|
32 |
+
device=device,
|
33 |
+
operations=operations
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(
|
37 |
+
self,
|
38 |
+
x: torch.Tensor,
|
39 |
+
timesteps: torch.Tensor,
|
40 |
+
y: Optional[torch.Tensor] = None,
|
41 |
+
context: Optional[torch.Tensor] = None,
|
42 |
+
hint = None,
|
43 |
+
) -> torch.Tensor:
|
44 |
+
|
45 |
+
#weird sd3 controlnet specific stuff
|
46 |
+
y = torch.zeros_like(y)
|
47 |
+
|
48 |
+
if self.context_processor is not None:
|
49 |
+
context = self.context_processor(context)
|
50 |
+
|
51 |
+
hw = x.shape[-2:]
|
52 |
+
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
|
53 |
+
x += self.pos_embed_input(hint)
|
54 |
+
|
55 |
+
c = self.t_embedder(timesteps, dtype=x.dtype)
|
56 |
+
if y is not None and self.y_embedder is not None:
|
57 |
+
y = self.y_embedder(y)
|
58 |
+
c = c + y
|
59 |
+
|
60 |
+
if context is not None:
|
61 |
+
context = self.context_embedder(context)
|
62 |
+
|
63 |
+
output = []
|
64 |
+
|
65 |
+
blocks = len(self.joint_blocks)
|
66 |
+
for i in range(blocks):
|
67 |
+
context, x = self.joint_blocks[i](
|
68 |
+
context,
|
69 |
+
x,
|
70 |
+
c=c,
|
71 |
+
use_checkpoint=self.use_checkpoint,
|
72 |
+
)
|
73 |
+
|
74 |
+
out = self.controlnet_blocks[i](x)
|
75 |
+
count = self.depth // blocks
|
76 |
+
if i == blocks - 1:
|
77 |
+
count -= 1
|
78 |
+
for j in range(count):
|
79 |
+
output.append(out)
|
80 |
+
|
81 |
+
return {"output": output}
|
Imagine/imagine-v5-ultra/comfy/cli_args.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import enum
|
3 |
+
import os
|
4 |
+
import comfy.options
|
5 |
+
|
6 |
+
|
7 |
+
class EnumAction(argparse.Action):
|
8 |
+
"""
|
9 |
+
Argparse action for handling Enums
|
10 |
+
"""
|
11 |
+
def __init__(self, **kwargs):
|
12 |
+
# Pop off the type value
|
13 |
+
enum_type = kwargs.pop("type", None)
|
14 |
+
|
15 |
+
# Ensure an Enum subclass is provided
|
16 |
+
if enum_type is None:
|
17 |
+
raise ValueError("type must be assigned an Enum when using EnumAction")
|
18 |
+
if not issubclass(enum_type, enum.Enum):
|
19 |
+
raise TypeError("type must be an Enum when using EnumAction")
|
20 |
+
|
21 |
+
# Generate choices from the Enum
|
22 |
+
choices = tuple(e.value for e in enum_type)
|
23 |
+
kwargs.setdefault("choices", choices)
|
24 |
+
kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
|
25 |
+
|
26 |
+
super(EnumAction, self).__init__(**kwargs)
|
27 |
+
|
28 |
+
self._enum = enum_type
|
29 |
+
|
30 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
31 |
+
# Convert value back into an Enum
|
32 |
+
value = self._enum(values)
|
33 |
+
setattr(namespace, self.dest, value)
|
34 |
+
|
35 |
+
|
36 |
+
parser = argparse.ArgumentParser()
|
37 |
+
|
38 |
+
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
|
39 |
+
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
40 |
+
parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
|
41 |
+
parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
|
42 |
+
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
|
43 |
+
parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
|
44 |
+
|
45 |
+
parser.add_argument("--base-directory", type=str, default=None, help="Set the ComfyUI base directory for models, custom_nodes, input, output, temp, and user directories.")
|
46 |
+
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
|
47 |
+
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory. Overrides --base-directory.")
|
48 |
+
parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory). Overrides --base-directory.")
|
49 |
+
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
|
50 |
+
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
|
51 |
+
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
52 |
+
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
53 |
+
cm_group = parser.add_mutually_exclusive_group()
|
54 |
+
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
|
55 |
+
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
|
56 |
+
|
57 |
+
|
58 |
+
fp_group = parser.add_mutually_exclusive_group()
|
59 |
+
fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
|
60 |
+
fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
|
61 |
+
|
62 |
+
fpunet_group = parser.add_mutually_exclusive_group()
|
63 |
+
fpunet_group.add_argument("--fp32-unet", action="store_true", help="Run the diffusion model in fp32.")
|
64 |
+
fpunet_group.add_argument("--fp64-unet", action="store_true", help="Run the diffusion model in fp64.")
|
65 |
+
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diffusion model in bf16.")
|
66 |
+
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
|
67 |
+
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
68 |
+
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
69 |
+
|
70 |
+
fpvae_group = parser.add_mutually_exclusive_group()
|
71 |
+
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
|
72 |
+
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
|
73 |
+
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
|
74 |
+
|
75 |
+
parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
|
76 |
+
|
77 |
+
fpte_group = parser.add_mutually_exclusive_group()
|
78 |
+
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
|
79 |
+
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
|
80 |
+
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
|
81 |
+
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
|
82 |
+
fpte_group.add_argument("--bf16-text-enc", action="store_true", help="Store text encoder weights in bf16.")
|
83 |
+
|
84 |
+
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
|
85 |
+
|
86 |
+
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
87 |
+
|
88 |
+
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
|
89 |
+
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
|
90 |
+
|
91 |
+
class LatentPreviewMethod(enum.Enum):
|
92 |
+
NoPreviews = "none"
|
93 |
+
Auto = "auto"
|
94 |
+
Latent2RGB = "latent2rgb"
|
95 |
+
TAESD = "taesd"
|
96 |
+
|
97 |
+
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
98 |
+
|
99 |
+
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
|
100 |
+
|
101 |
+
cache_group = parser.add_mutually_exclusive_group()
|
102 |
+
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
103 |
+
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
104 |
+
|
105 |
+
attn_group = parser.add_mutually_exclusive_group()
|
106 |
+
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
107 |
+
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
108 |
+
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
109 |
+
attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
|
110 |
+
attn_group.add_argument("--use-flash-attention", action="store_true", help="Use FlashAttention.")
|
111 |
+
|
112 |
+
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
113 |
+
|
114 |
+
upcast = parser.add_mutually_exclusive_group()
|
115 |
+
upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
|
116 |
+
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
|
117 |
+
|
118 |
+
|
119 |
+
vram_group = parser.add_mutually_exclusive_group()
|
120 |
+
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
|
121 |
+
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
|
122 |
+
vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
|
123 |
+
vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
|
124 |
+
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
|
125 |
+
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
126 |
+
|
127 |
+
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
|
128 |
+
|
129 |
+
|
130 |
+
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
131 |
+
|
132 |
+
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
133 |
+
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
|
134 |
+
|
135 |
+
class PerformanceFeature(enum.Enum):
|
136 |
+
Fp16Accumulation = "fp16_accumulation"
|
137 |
+
Fp8MatrixMultiplication = "fp8_matrix_mult"
|
138 |
+
|
139 |
+
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult")
|
140 |
+
|
141 |
+
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
142 |
+
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
143 |
+
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
|
144 |
+
|
145 |
+
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
146 |
+
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
|
147 |
+
|
148 |
+
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
149 |
+
|
150 |
+
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
|
151 |
+
parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).")
|
152 |
+
|
153 |
+
# The default built-in provider hosted under web/
|
154 |
+
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
|
155 |
+
|
156 |
+
parser.add_argument(
|
157 |
+
"--front-end-version",
|
158 |
+
type=str,
|
159 |
+
default=DEFAULT_VERSION_STRING,
|
160 |
+
help="""
|
161 |
+
Specifies the version of the frontend to be used. This command needs internet connectivity to query and
|
162 |
+
download available frontend implementations from GitHub releases.
|
163 |
+
|
164 |
+
The version string should be in the format of:
|
165 |
+
[repoOwner]/[repoName]@[version]
|
166 |
+
where version is one of: "latest" or a valid version number (e.g. "1.0.0")
|
167 |
+
""",
|
168 |
+
)
|
169 |
+
|
170 |
+
def is_valid_directory(path: str) -> str:
|
171 |
+
"""Validate if the given path is a directory, and check permissions."""
|
172 |
+
if not os.path.exists(path):
|
173 |
+
raise argparse.ArgumentTypeError(f"The path '{path}' does not exist.")
|
174 |
+
if not os.path.isdir(path):
|
175 |
+
raise argparse.ArgumentTypeError(f"'{path}' is not a directory.")
|
176 |
+
if not os.access(path, os.R_OK):
|
177 |
+
raise argparse.ArgumentTypeError(f"You do not have read permissions for '{path}'.")
|
178 |
+
return path
|
179 |
+
|
180 |
+
parser.add_argument(
|
181 |
+
"--front-end-root",
|
182 |
+
type=is_valid_directory,
|
183 |
+
default=None,
|
184 |
+
help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
|
185 |
+
)
|
186 |
+
|
187 |
+
parser.add_argument("--user-directory", type=is_valid_directory, default=None, help="Set the ComfyUI user directory with an absolute path. Overrides --base-directory.")
|
188 |
+
|
189 |
+
parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.")
|
190 |
+
|
191 |
+
if comfy.options.args_parsing:
|
192 |
+
args = parser.parse_args()
|
193 |
+
else:
|
194 |
+
args = parser.parse_args([])
|
195 |
+
|
196 |
+
if args.windows_standalone_build:
|
197 |
+
args.auto_launch = True
|
198 |
+
|
199 |
+
if args.disable_auto_launch:
|
200 |
+
args.auto_launch = False
|
201 |
+
|
202 |
+
if args.force_fp16:
|
203 |
+
args.fp16_unet = True
|
204 |
+
|
205 |
+
|
206 |
+
# '--fast' is not provided, use an empty set
|
207 |
+
if args.fast is None:
|
208 |
+
args.fast = set()
|
209 |
+
# '--fast' is provided with an empty list, enable all optimizations
|
210 |
+
elif args.fast == []:
|
211 |
+
args.fast = set(PerformanceFeature)
|
212 |
+
# '--fast' is provided with a list of performance features, use that list
|
213 |
+
else:
|
214 |
+
args.fast = set(args.fast)
|
Imagine/imagine-v5-ultra/comfy/clip_config_bigg.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPTextModel"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"eos_token_id": 49407,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_size": 1280,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 5120,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 77,
|
16 |
+
"model_type": "clip_text_model",
|
17 |
+
"num_attention_heads": 20,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"projection_dim": 1280,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"vocab_size": 49408
|
23 |
+
}
|
Imagine/imagine-v5-ultra/comfy/clip_model.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from comfy.ldm.modules.attention import optimized_attention_for_device
|
3 |
+
import comfy.ops
|
4 |
+
|
5 |
+
class CLIPAttention(torch.nn.Module):
|
6 |
+
def __init__(self, embed_dim, heads, dtype, device, operations):
|
7 |
+
super().__init__()
|
8 |
+
|
9 |
+
self.heads = heads
|
10 |
+
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
11 |
+
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
12 |
+
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
13 |
+
|
14 |
+
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
15 |
+
|
16 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
17 |
+
q = self.q_proj(x)
|
18 |
+
k = self.k_proj(x)
|
19 |
+
v = self.v_proj(x)
|
20 |
+
|
21 |
+
out = optimized_attention(q, k, v, self.heads, mask)
|
22 |
+
return self.out_proj(out)
|
23 |
+
|
24 |
+
ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
25 |
+
"gelu": torch.nn.functional.gelu,
|
26 |
+
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
|
27 |
+
}
|
28 |
+
|
29 |
+
class CLIPMLP(torch.nn.Module):
|
30 |
+
def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
|
31 |
+
super().__init__()
|
32 |
+
self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
|
33 |
+
self.activation = ACTIVATIONS[activation]
|
34 |
+
self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
x = self.fc1(x)
|
38 |
+
x = self.activation(x)
|
39 |
+
x = self.fc2(x)
|
40 |
+
return x
|
41 |
+
|
42 |
+
class CLIPLayer(torch.nn.Module):
|
43 |
+
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
44 |
+
super().__init__()
|
45 |
+
self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
46 |
+
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
|
47 |
+
self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
48 |
+
self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
|
49 |
+
|
50 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
51 |
+
x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
|
52 |
+
x += self.mlp(self.layer_norm2(x))
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
class CLIPEncoder(torch.nn.Module):
|
57 |
+
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
58 |
+
super().__init__()
|
59 |
+
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
|
60 |
+
|
61 |
+
def forward(self, x, mask=None, intermediate_output=None):
|
62 |
+
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
63 |
+
|
64 |
+
if intermediate_output is not None:
|
65 |
+
if intermediate_output < 0:
|
66 |
+
intermediate_output = len(self.layers) + intermediate_output
|
67 |
+
|
68 |
+
intermediate = None
|
69 |
+
for i, l in enumerate(self.layers):
|
70 |
+
x = l(x, mask, optimized_attention)
|
71 |
+
if i == intermediate_output:
|
72 |
+
intermediate = x.clone()
|
73 |
+
return x, intermediate
|
74 |
+
|
75 |
+
class CLIPEmbeddings(torch.nn.Module):
|
76 |
+
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
|
77 |
+
super().__init__()
|
78 |
+
self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
79 |
+
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
80 |
+
|
81 |
+
def forward(self, input_tokens, dtype=torch.float32):
|
82 |
+
return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
|
83 |
+
|
84 |
+
|
85 |
+
class CLIPTextModel_(torch.nn.Module):
|
86 |
+
def __init__(self, config_dict, dtype, device, operations):
|
87 |
+
num_layers = config_dict["num_hidden_layers"]
|
88 |
+
embed_dim = config_dict["hidden_size"]
|
89 |
+
heads = config_dict["num_attention_heads"]
|
90 |
+
intermediate_size = config_dict["intermediate_size"]
|
91 |
+
intermediate_activation = config_dict["hidden_act"]
|
92 |
+
num_positions = config_dict["max_position_embeddings"]
|
93 |
+
self.eos_token_id = config_dict["eos_token_id"]
|
94 |
+
|
95 |
+
super().__init__()
|
96 |
+
self.embeddings = CLIPEmbeddings(embed_dim, num_positions=num_positions, dtype=dtype, device=device, operations=operations)
|
97 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
98 |
+
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
99 |
+
|
100 |
+
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
|
101 |
+
if embeds is not None:
|
102 |
+
x = embeds + comfy.ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
|
103 |
+
else:
|
104 |
+
x = self.embeddings(input_tokens, dtype=dtype)
|
105 |
+
|
106 |
+
mask = None
|
107 |
+
if attention_mask is not None:
|
108 |
+
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
109 |
+
mask = mask.masked_fill(mask.to(torch.bool), -torch.finfo(x.dtype).max)
|
110 |
+
|
111 |
+
causal_mask = torch.full((x.shape[1], x.shape[1]), -torch.finfo(x.dtype).max, dtype=x.dtype, device=x.device).triu_(1)
|
112 |
+
|
113 |
+
if mask is not None:
|
114 |
+
mask += causal_mask
|
115 |
+
else:
|
116 |
+
mask = causal_mask
|
117 |
+
|
118 |
+
x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
|
119 |
+
x = self.final_layer_norm(x)
|
120 |
+
if i is not None and final_layer_norm_intermediate:
|
121 |
+
i = self.final_layer_norm(i)
|
122 |
+
|
123 |
+
if num_tokens is not None:
|
124 |
+
pooled_output = x[list(range(x.shape[0])), list(map(lambda a: a - 1, num_tokens))]
|
125 |
+
else:
|
126 |
+
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
|
127 |
+
return x, i, pooled_output
|
128 |
+
|
129 |
+
class CLIPTextModel(torch.nn.Module):
|
130 |
+
def __init__(self, config_dict, dtype, device, operations):
|
131 |
+
super().__init__()
|
132 |
+
self.num_layers = config_dict["num_hidden_layers"]
|
133 |
+
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
|
134 |
+
embed_dim = config_dict["hidden_size"]
|
135 |
+
self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
136 |
+
self.dtype = dtype
|
137 |
+
|
138 |
+
def get_input_embeddings(self):
|
139 |
+
return self.text_model.embeddings.token_embedding
|
140 |
+
|
141 |
+
def set_input_embeddings(self, embeddings):
|
142 |
+
self.text_model.embeddings.token_embedding = embeddings
|
143 |
+
|
144 |
+
def forward(self, *args, **kwargs):
|
145 |
+
x = self.text_model(*args, **kwargs)
|
146 |
+
out = self.text_projection(x[2])
|
147 |
+
return (x[0], x[1], out, x[2])
|
148 |
+
|
149 |
+
|
150 |
+
class CLIPVisionEmbeddings(torch.nn.Module):
|
151 |
+
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None):
|
152 |
+
super().__init__()
|
153 |
+
|
154 |
+
num_patches = (image_size // patch_size) ** 2
|
155 |
+
if model_type == "siglip_vision_model":
|
156 |
+
self.class_embedding = None
|
157 |
+
patch_bias = True
|
158 |
+
else:
|
159 |
+
num_patches = num_patches + 1
|
160 |
+
self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
|
161 |
+
patch_bias = False
|
162 |
+
|
163 |
+
self.patch_embedding = operations.Conv2d(
|
164 |
+
in_channels=num_channels,
|
165 |
+
out_channels=embed_dim,
|
166 |
+
kernel_size=patch_size,
|
167 |
+
stride=patch_size,
|
168 |
+
bias=patch_bias,
|
169 |
+
dtype=dtype,
|
170 |
+
device=device
|
171 |
+
)
|
172 |
+
|
173 |
+
self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device)
|
174 |
+
|
175 |
+
def forward(self, pixel_values):
|
176 |
+
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
|
177 |
+
if self.class_embedding is not None:
|
178 |
+
embeds = torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1)
|
179 |
+
return embeds + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
|
180 |
+
|
181 |
+
|
182 |
+
class CLIPVision(torch.nn.Module):
|
183 |
+
def __init__(self, config_dict, dtype, device, operations):
|
184 |
+
super().__init__()
|
185 |
+
num_layers = config_dict["num_hidden_layers"]
|
186 |
+
embed_dim = config_dict["hidden_size"]
|
187 |
+
heads = config_dict["num_attention_heads"]
|
188 |
+
intermediate_size = config_dict["intermediate_size"]
|
189 |
+
intermediate_activation = config_dict["hidden_act"]
|
190 |
+
model_type = config_dict["model_type"]
|
191 |
+
|
192 |
+
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
|
193 |
+
if model_type == "siglip_vision_model":
|
194 |
+
self.pre_layrnorm = lambda a: a
|
195 |
+
self.output_layernorm = True
|
196 |
+
else:
|
197 |
+
self.pre_layrnorm = operations.LayerNorm(embed_dim)
|
198 |
+
self.output_layernorm = False
|
199 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
200 |
+
self.post_layernorm = operations.LayerNorm(embed_dim)
|
201 |
+
|
202 |
+
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
|
203 |
+
x = self.embeddings(pixel_values)
|
204 |
+
x = self.pre_layrnorm(x)
|
205 |
+
#TODO: attention_mask?
|
206 |
+
x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
|
207 |
+
if self.output_layernorm:
|
208 |
+
x = self.post_layernorm(x)
|
209 |
+
pooled_output = x
|
210 |
+
else:
|
211 |
+
pooled_output = self.post_layernorm(x[:, 0, :])
|
212 |
+
return x, i, pooled_output
|
213 |
+
|
214 |
+
class LlavaProjector(torch.nn.Module):
|
215 |
+
def __init__(self, in_dim, out_dim, dtype, device, operations):
|
216 |
+
super().__init__()
|
217 |
+
self.linear_1 = operations.Linear(in_dim, out_dim, bias=True, device=device, dtype=dtype)
|
218 |
+
self.linear_2 = operations.Linear(out_dim, out_dim, bias=True, device=device, dtype=dtype)
|
219 |
+
|
220 |
+
def forward(self, x):
|
221 |
+
return self.linear_2(torch.nn.functional.gelu(self.linear_1(x[:, 1:])))
|
222 |
+
|
223 |
+
class CLIPVisionModelProjection(torch.nn.Module):
|
224 |
+
def __init__(self, config_dict, dtype, device, operations):
|
225 |
+
super().__init__()
|
226 |
+
self.vision_model = CLIPVision(config_dict, dtype, device, operations)
|
227 |
+
if "projection_dim" in config_dict:
|
228 |
+
self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
|
229 |
+
else:
|
230 |
+
self.visual_projection = lambda a: a
|
231 |
+
|
232 |
+
if "llava3" == config_dict.get("projector_type", None):
|
233 |
+
self.multi_modal_projector = LlavaProjector(config_dict["hidden_size"], 4096, dtype, device, operations)
|
234 |
+
else:
|
235 |
+
self.multi_modal_projector = None
|
236 |
+
|
237 |
+
def forward(self, *args, **kwargs):
|
238 |
+
x = self.vision_model(*args, **kwargs)
|
239 |
+
out = self.visual_projection(x[2])
|
240 |
+
projected = None
|
241 |
+
if self.multi_modal_projector is not None:
|
242 |
+
projected = self.multi_modal_projector(x[1])
|
243 |
+
|
244 |
+
return (x[0], x[1], out, projected)
|
Imagine/imagine-v5-ultra/comfy/clip_vision.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
import logging
|
6 |
+
|
7 |
+
import comfy.ops
|
8 |
+
import comfy.model_patcher
|
9 |
+
import comfy.model_management
|
10 |
+
import comfy.utils
|
11 |
+
import comfy.clip_model
|
12 |
+
import comfy.image_encoders.dino2
|
13 |
+
|
14 |
+
class Output:
|
15 |
+
def __getitem__(self, key):
|
16 |
+
return getattr(self, key)
|
17 |
+
def __setitem__(self, key, item):
|
18 |
+
setattr(self, key, item)
|
19 |
+
|
20 |
+
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
|
21 |
+
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
|
22 |
+
std = torch.tensor(std, device=image.device, dtype=image.dtype)
|
23 |
+
image = image.movedim(-1, 1)
|
24 |
+
if not (image.shape[2] == size and image.shape[3] == size):
|
25 |
+
if crop:
|
26 |
+
scale = (size / min(image.shape[2], image.shape[3]))
|
27 |
+
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
|
28 |
+
else:
|
29 |
+
scale_size = (size, size)
|
30 |
+
|
31 |
+
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
|
32 |
+
h = (image.shape[2] - size)//2
|
33 |
+
w = (image.shape[3] - size)//2
|
34 |
+
image = image[:,:,h:h+size,w:w+size]
|
35 |
+
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
36 |
+
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
37 |
+
|
38 |
+
IMAGE_ENCODERS = {
|
39 |
+
"clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
|
40 |
+
"siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
|
41 |
+
"dinov2": comfy.image_encoders.dino2.Dinov2Model,
|
42 |
+
}
|
43 |
+
|
44 |
+
class ClipVisionModel():
|
45 |
+
def __init__(self, json_config):
|
46 |
+
with open(json_config) as f:
|
47 |
+
config = json.load(f)
|
48 |
+
|
49 |
+
self.image_size = config.get("image_size", 224)
|
50 |
+
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
|
51 |
+
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
|
52 |
+
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
|
53 |
+
self.load_device = comfy.model_management.text_encoder_device()
|
54 |
+
offload_device = comfy.model_management.text_encoder_offload_device()
|
55 |
+
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
56 |
+
self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
57 |
+
self.model.eval()
|
58 |
+
|
59 |
+
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
60 |
+
|
61 |
+
def load_sd(self, sd):
|
62 |
+
return self.model.load_state_dict(sd, strict=False)
|
63 |
+
|
64 |
+
def get_sd(self):
|
65 |
+
return self.model.state_dict()
|
66 |
+
|
67 |
+
def encode_image(self, image, crop=True):
|
68 |
+
comfy.model_management.load_model_gpu(self.patcher)
|
69 |
+
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
|
70 |
+
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
71 |
+
|
72 |
+
outputs = Output()
|
73 |
+
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
|
74 |
+
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
|
75 |
+
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
|
76 |
+
outputs["mm_projected"] = out[3]
|
77 |
+
return outputs
|
78 |
+
|
79 |
+
def convert_to_transformers(sd, prefix):
|
80 |
+
sd_k = sd.keys()
|
81 |
+
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
|
82 |
+
keys_to_replace = {
|
83 |
+
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
|
84 |
+
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
|
85 |
+
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
|
86 |
+
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
|
87 |
+
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
|
88 |
+
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
|
89 |
+
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
|
90 |
+
}
|
91 |
+
|
92 |
+
for x in keys_to_replace:
|
93 |
+
if x in sd_k:
|
94 |
+
sd[keys_to_replace[x]] = sd.pop(x)
|
95 |
+
|
96 |
+
if "{}proj".format(prefix) in sd_k:
|
97 |
+
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
|
98 |
+
|
99 |
+
sd = transformers_convert(sd, prefix, "vision_model.", 48)
|
100 |
+
else:
|
101 |
+
replace_prefix = {prefix: ""}
|
102 |
+
sd = state_dict_prefix_replace(sd, replace_prefix)
|
103 |
+
return sd
|
104 |
+
|
105 |
+
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
106 |
+
if convert_keys:
|
107 |
+
sd = convert_to_transformers(sd, prefix)
|
108 |
+
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
|
109 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
|
110 |
+
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
111 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
112 |
+
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
113 |
+
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
|
114 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
|
115 |
+
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
|
116 |
+
if "multi_modal_projector.linear_1.bias" in sd:
|
117 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
|
118 |
+
else:
|
119 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
|
120 |
+
else:
|
121 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
122 |
+
elif "embeddings.patch_embeddings.projection.weight" in sd:
|
123 |
+
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
|
124 |
+
else:
|
125 |
+
return None
|
126 |
+
|
127 |
+
clip = ClipVisionModel(json_config)
|
128 |
+
m, u = clip.load_sd(sd)
|
129 |
+
if len(m) > 0:
|
130 |
+
logging.warning("missing clip vision: {}".format(m))
|
131 |
+
u = set(u)
|
132 |
+
keys = list(sd.keys())
|
133 |
+
for k in keys:
|
134 |
+
if k not in u:
|
135 |
+
sd.pop(k)
|
136 |
+
return clip
|
137 |
+
|
138 |
+
def load(ckpt_path):
|
139 |
+
sd = load_torch_file(ckpt_path)
|
140 |
+
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
|
141 |
+
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
|
142 |
+
else:
|
143 |
+
return load_clipvision_from_sd(sd)
|
Imagine/imagine-v5-ultra/comfy/clip_vision_config_g.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_size": 1664,
|
6 |
+
"image_size": 224,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 8192,
|
10 |
+
"layer_norm_eps": 1e-05,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 48,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 1280,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|
Imagine/imagine-v5-ultra/comfy/clip_vision_config_h.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_size": 1280,
|
6 |
+
"image_size": 224,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 5120,
|
10 |
+
"layer_norm_eps": 1e-05,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 32,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 1024,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|
Imagine/imagine-v5-ultra/comfy/clip_vision_config_vitl.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "quick_gelu",
|
5 |
+
"hidden_size": 1024,
|
6 |
+
"image_size": 224,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 4096,
|
10 |
+
"layer_norm_eps": 1e-05,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 24,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 768,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|