vuongnhathien commited on
Commit
ffc4d52
·
verified ·
1 Parent(s): 30d385b

Model save

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-tiny-22k-384
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: cconvnext-tiny-15ep-1e-4
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: validation
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9355864811133201
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # cconvnext-tiny-15ep-1e-4
32
+
33
+ This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-384](https://huggingface.co/facebook/convnextv2-tiny-22k-384) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.2902
36
+ - Accuracy: 0.9356
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0001
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: cosine
61
+ - num_epochs: 15
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 0.5838 | 1.0 | 550 | 0.4097 | 0.8811 |
68
+ | 0.4565 | 2.0 | 1100 | 0.4269 | 0.8763 |
69
+ | 0.3628 | 3.0 | 1650 | 0.3464 | 0.9002 |
70
+ | 0.2915 | 4.0 | 2200 | 0.3366 | 0.9066 |
71
+ | 0.2655 | 5.0 | 2750 | 0.3387 | 0.9054 |
72
+ | 0.2395 | 6.0 | 3300 | 0.3313 | 0.9125 |
73
+ | 0.2065 | 7.0 | 3850 | 0.3120 | 0.9181 |
74
+ | 0.1503 | 8.0 | 4400 | 0.3065 | 0.9221 |
75
+ | 0.1503 | 9.0 | 4950 | 0.2948 | 0.9276 |
76
+ | 0.1125 | 10.0 | 5500 | 0.2918 | 0.9304 |
77
+ | 0.1057 | 11.0 | 6050 | 0.2954 | 0.9328 |
78
+ | 0.0937 | 12.0 | 6600 | 0.2959 | 0.9336 |
79
+ | 0.0966 | 13.0 | 7150 | 0.2940 | 0.9352 |
80
+ | 0.0735 | 14.0 | 7700 | 0.2916 | 0.9340 |
81
+ | 0.0881 | 15.0 | 8250 | 0.2902 | 0.9356 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.39.3
87
+ - Pytorch 2.1.2
88
+ - Datasets 2.18.0
89
+ - Tokenizers 0.15.2