--- license: apache-2.0 # must match Settings → Licensing pipeline_tag: object-detection library_name: ultralytics model_type: yolov9 datasets: - benediktkol/DDOS metrics: - accuracy --- YOLO298B is a custom‑trained Ultralytics YOLO model (`best.pt`) built by **Team 6 (SJSU)**. It detects aerial classes in aerial imagery collected by autonomous drones. | Attribute | Value | |------------------|----------------| | **Architecture** | YOLO‑v9‑S | | **Input size** | 640 × 640 px | | **Classes** | *n* | | **Checkpoint** | 5.5 MB | ## Intended uses & limitations | Use‑case | ✅ Recommended | 🚫 Not recommended | |--------------------------------------|---------------|--------------------| | Real‑time obstacle detection on UAVs | ✔️ | | | Academic research / benchmarking | ✔️ | | | Safety‑critical deployment w/o human | | ❌ | ## Training data Dataset: **benediktkol/DDOS** – contains drone‑view images with obstacles (*\*). Split: 80 % train · 10 % val · 10 % test ## Quick start ```python from ultralytics import YOLO model = YOLO("vsham001/Yolo298B") results = model("https://ultralytics.com/images/bus.jpg") results[0].show()