vsham001 commited on
Commit
b55bbbc
·
verified ·
1 Parent(s): b2298bc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -17
README.md CHANGED
@@ -1,30 +1,33 @@
1
  ---
2
- license: apache-2.0
 
 
3
  datasets:
4
- - benediktkol/DDOS
5
  metrics:
6
- - accuracy
 
7
 
8
- YOLO298B is a custom‑trained Ultralytics YOLO model (`best.pt`) built by **Team 6 (SJSU)**.
9
  It detects aerial classes in aerial imagery collected by autonomous drones.
10
 
11
- | Attribute | Value |
12
- |----------------|--------------------------|
13
- | **Architecture** | YOLO‑v9‑S (PyTorch) |
14
- | **Input size** | 640 × 640 pixels |
15
- | **Classes** | *n* |
16
- | **Checkpoint** | 5.5 MB |
17
 
18
  ## Intended uses & limitations
19
 
20
- | Use‑case | ✅ Recommended | 🚫 Not recommended |
21
- |---------------------------------------|---------------|--------------------|
22
- | Real‑time obstacle detection on UAVs | ✔️ | |
23
- | Academic research / benchmarking | ✔️ | |
24
- | Safety‑critical deployment w/o human | | ❌ |
25
 
26
  ## Training data
27
- Dataset: `<DATASET NAME>`*brief description, #images, license*
28
  Split: 80 % train · 10 % val · 10 % test
29
 
30
  ## Quick start
@@ -34,4 +37,4 @@ from ultralytics import YOLO
34
 
35
  model = YOLO("vsham001/Yolo298B")
36
  results = model("https://ultralytics.com/images/bus.jpg")
37
- results[0].show()
 
1
  ---
2
+ license: apache-2.0 # must match Settings → Licensing
3
+ pipeline_tag: object-detection
4
+ model_type: yolov9
5
  datasets:
6
+ - benediktkol/DDOS
7
  metrics:
8
+ - accuracy
9
+ ---
10
 
11
+ YOLO298B is a custom‑trained Ultralytics YOLO model (`best.pt`) built by **Team 6 (SJSU)**.
12
  It detects aerial classes in aerial imagery collected by autonomous drones.
13
 
14
+ | Attribute | Value |
15
+ |------------------|----------------|
16
+ | **Architecture** | YOLO‑v9‑S |
17
+ | **Input size** | 640 × 640 px |
18
+ | **Classes** | *n* |
19
+ | **Checkpoint** | 5.5MB |
20
 
21
  ## Intended uses & limitations
22
 
23
+ | Use‑case | ✅ Recommended | 🚫 Not recommended |
24
+ |--------------------------------------|---------------|--------------------|
25
+ | Real‑time obstacle detection on UAVs | ✔️ | |
26
+ | Academic research / benchmarking | ✔️ | |
27
+ | Safety‑critical deployment w/o human | | |
28
 
29
  ## Training data
30
+ Dataset: **benediktkol/DDOS**contains drone‑view images with obstacles (*\<brief description\>*).
31
  Split: 80 % train · 10 % val · 10 % test
32
 
33
  ## Quick start
 
37
 
38
  model = YOLO("vsham001/Yolo298B")
39
  results = model("https://ultralytics.com/images/bus.jpg")
40
+ results[0].show()