File size: 1,665 Bytes
55cc195
 
 
 
 
 
e82e4bd
 
55cc195
 
 
 
 
 
 
 
 
 
 
 
e0b84f9
 
 
55cc195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b84f9
0977f02
 
55cc195
 
 
e0b84f9
55cc195
 
 
a1cd125
 
e0b84f9
 
 
55cc195
 
 
 
 
 
 
e0b84f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: saved_model_trial_3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# saved_model_trial_3

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.9815
- Exact Match: 37.0787
- F1: 0.8810

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.1642094602798244e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1     |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:------:|
| No log        | 1.0   | 22   | 5.6802          | 34.8315     | 0.6986 |
| No log        | 2.0   | 44   | 5.1777          | 39.3258     | 0.8457 |
| No log        | 3.0   | 66   | 4.9815          | 37.0787     | 0.8810 |


### Framework versions

- Transformers 4.51.2
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.2