File size: 1,588 Bytes
2a347dc c9c380b 2a347dc 9b76dc2 2a347dc c9c380b 2a347dc b18c6e4 2a347dc b18c6e4 2a347dc b18c6e4 2a347dc c9c380b b18c6e4 2a347dc b18c6e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: saved_model_trial_0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# saved_model_trial_0
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.6998
- Exact Match: 0.0
- F1: 6.4735
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.699689850778873e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:------:|
| No log | 1.0 | 6 | 5.3004 | 0.0 | 6.3986 |
| No log | 2.0 | 12 | 4.6998 | 0.0 | 6.4735 |
### Framework versions
- Transformers 4.51.2
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.2
|