vmal commited on
Commit
b336f51
·
verified ·
1 Parent(s): b5f6b2f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -175
README.md CHANGED
@@ -1,202 +1,96 @@
1
  ---
 
2
  base_model: Qwen/Qwen2-7B
3
  library_name: peft
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
51
 
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
  base_model: Qwen/Qwen2-7B
4
  library_name: peft
5
+ datasets:
6
+ - vmal/ConfinityChatMLv1
7
+ tags:
8
+ - logical-reasoning
9
+ - chain-of-thought
10
+ - lora
11
+ - peft
12
+ - conversational
13
  ---
14
+ ## Overview
15
 
16
+ An autoregressive language model fine-tuned on ConfinityChatMLv1 for enhanced chain-of-thought and logical reasoning in conversational settings.
17
+ Built on Qwen2-7B using PEFT/LoRA.
 
 
18
 
19
+ ---
20
 
21
  ## Model Details
22
 
23
+ - **Base model:** Qwen/Qwen2-7B
24
+ - **Library:** PEFT (LoRA)
25
+ - **Model type:** Causal autoregressive transformer (decoder-only)
26
+ - **Languages:** English (primary)
27
+ - **License:** Apache-2.0 (inherits Qwen2-7B license)
28
+ - **Finetuned from:** Qwen/Qwen2-7B
29
+ - **Repository:** https://huggingface.co/vmal/qwen2-7b-logical-reasoning
30
+ - **Dataset:** ConfinityChatMLv1 (~140K reasoning dialogues)
31
 
32
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ## Uses
35
 
 
 
36
  ### Direct Use
37
 
38
+ - Provide step-by-step solutions to logic puzzles & math word problems
39
+ - Assist with structured reasoning in chatbots & virtual tutors
40
+ - Generate chain-of-thought–style explanations alongside answers
41
 
42
+ ### Downstream Use
43
 
44
+ - Automated grading & feedback on student solutions
45
+ - Knowledge-graph population via inference chains
46
+ - Hybrid QA systems requiring explanation traces
47
 
48
+ ### Out-of-Scope
49
 
50
+ - Creative/open-ended story generation
51
+ - Highly domain-specific expert systems without further fine-tuning
52
+ - Low-latency real-time deployment on edge devices
53
 
54
+ ---
 
 
 
 
 
 
55
 
56
+ ## Bias, Risks & Limitations
57
 
58
+ - **Inherited biases:** Cultural and gender stereotypes from pretraining corpus
59
+ - **Hallucinations:** May produce unsupported or incorrect facts when outside training scope
60
+ - **Overconfidence:** Can present flawed reasoning as fact, especially on adversarial or OOD tasks
61
 
62
  ### Recommendations
63
 
64
+ 1. **Benchmark** on your specific tasks before production use.
65
+ 2. **Human-in-the-loop** review for high-stakes decisions.
66
+ 3. **Ground outputs** with retrieval systems for verifiable sources.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
+ ## Quick Start
71
+
72
+ ```python
73
+ from transformers import AutoModelForCausalLM, AutoTokenizer
74
+ from peft import PeftModel
75
+
76
+ # Load tokenizer & base model
77
+ tokenizer = AutoTokenizer.from_pretrained(
78
+ "vmal/qwen2-7b-logical-reasoning",
79
+ trust_remote_code=True
80
+ )
81
+ base = AutoModelForCausalLM.from_pretrained(
82
+ "Qwen/Qwen2-7B",
83
+ trust_remote_code=True,
84
+ device_map="auto"
85
+ )
86
+ # Load LoRA adapters
87
+ model = PeftModel.from_pretrained(base, "vmal/qwen2-7b-logical-reasoning")
88
+
89
+ # Inference example
90
+ prompt = (
91
+ "Solve step by step: If all bloops are razzies, and some razzies are lazzies, "
92
+ "are all bloops lazzies?"
93
+ )
94
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
95
+ outputs = model.generate(**inputs, max_new_tokens=256)
96
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))