Feature Extraction
sentence-transformers
ONNX
Transformers
fastText
sentence-embeddings
sentence-similarity
semantic-search
vector-search
retrieval-augmented-generation
multilingual
cross-lingual
low-resource
merged-model
combined-model
tokenizer-embedded
tokenizer-integrated
standalone
all-in-one
quantized
int8
int8-quantization
optimized
efficient
fast-inference
low-latency
lightweight
small-model
edge-ready
arm64
edge-device
mobile-device
on-device
mobile-inference
tablet
smartphone
embedded-ai
onnx-runtime
onnx-model
MiniLM
MiniLM-L12-v2
paraphrase
usecase-ready
plug-and-play
production-ready
deployment-ready
real-time
distiluse
Update README.md
Browse files
README.md
CHANGED
@@ -80,6 +80,11 @@ Built upon `distiluse-base-multilingual-cased-v2`, the model has been:
|
|
80 |
|
81 |
---
|
82 |
|
|
|
|
|
|
|
|
|
|
|
83 |
## 🐍 Python Example
|
84 |
```python
|
85 |
import numpy as np
|
@@ -108,9 +113,4 @@ const session = await InferenceSession.create(EMBEDDING_FULL_MODEL_PATH);
|
|
108 |
const inputTensor = new Tensor('string', ['something..'], [1]);
|
109 |
const feeds = { text: inputTensor };
|
110 |
const outputMap = await session.run(feeds);
|
111 |
-
const embedding = outputMap.text_embedding.data;
|
112 |
-
|
113 |
-
---
|
114 |
-
|
115 |
-
🤖 Author
|
116 |
-
@vlad-m-dev Built for edge-ai/phone/tablet offline image classification: document vs photo Telegram: https://t.me/dwight_schrute_engineer
|
|
|
80 |
|
81 |
---
|
82 |
|
83 |
+
🤖 Author
|
84 |
+
@vlad-m-dev Built for edge-ai/phone/tablet offline image classification: document vs photo Telegram: https://t.me/dwight_schrute_engineer
|
85 |
+
|
86 |
+
---
|
87 |
+
|
88 |
## 🐍 Python Example
|
89 |
```python
|
90 |
import numpy as np
|
|
|
113 |
const inputTensor = new Tensor('string', ['something..'], [1]);
|
114 |
const feeds = { text: inputTensor };
|
115 |
const outputMap = await session.run(feeds);
|
116 |
+
const embedding = outputMap.text_embedding.data;
|
|
|
|
|
|
|
|
|
|