--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: whisper-medium-konnakol-rests-0.2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: test args: default metrics: - name: Wer type: wer value: 32.26744186046512 --- # whisper-medium-konnakol-rests-0.2 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1067 - Wer: 32.2674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.7473 | 16.5333 | 50 | 0.0780 | 64.8256 | | 0.0143 | 33.2667 | 100 | 0.0719 | 49.7093 | | 0.0079 | 49.8 | 150 | 0.0784 | 54.6512 | | 0.0018 | 66.5333 | 200 | 0.1028 | 39.8256 | | 0.0003 | 83.2667 | 250 | 0.1079 | 32.2674 | | 0.0004 | 99.8 | 300 | 0.1067 | 32.2674 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.1