File size: 2,190 Bytes
68f79cf 52d3eb4 68f79cf 2c4fd17 6c43ad1 2c4fd17 6c43ad1 2c4fd17 6c43ad1 2c4fd17 912df6a 6c43ad1 912df6a 2c4fd17 6c43ad1 2c4fd17 6c43ad1 2c4fd17 d6f09a9 b1a26c2 6c43ad1 b1a26c2 6c43ad1 b1a26c2 19d37cc b1a26c2 6c43ad1 b1a26c2 2c4fd17 0e95a73 2c4fd17 00c3f2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: mit
language:
- en
metrics:
- accuracy 97.9%
base_model:
- distilbert/distilbert-base-uncased
pipeline_tag: text-classification
---
# Last Name Classification Model
[](https://nowpayments.io/donation/Vishodi)
A Transformer-based classifier that checks if a provided last name is likely to be **real** (LABEL_1) or **fake** (LABEL_0). This can be helpful in validating contact form submissions, preventing bot entries, or for general name classification tasks.
## Table of Contents
- [Project Structure](#project-structure)
- [Installation](#installation)
- [Usage](#usage)
- [Support Me](#support-me)
- [License](#license)
## Project Structure
```plaintext
Last_Name_Prediction/
βββ .gitattributes
βββ README.md
βββ config.json
βββ model.safetensors
βββ requirements.txt
βββ special_tokens_map.json
βββ tokenizer.json
βββ tokenizer_config.json
βββ vocab.txt
```
## Installation
1. **Clone the Repository:**
```bash
git clone https://github.com/Vishodi/Last-Name-Classification.git
```
2. **Set Up the Environment:**
Install the required packages using pip:
```bash
pip install -r requirements.txt
```
## Usage
```python
from transformers import pipeline
# Replace with your model repository
model_dir = "vishodi/Last-Name-Classification"
# Load the model pipeline with authentication
classifier = pipeline(
"text-classification",
model=model_dir,
tokenizer=model_dir,
)
# Test the model
test_names = ["musk", "zzzzzz", "uhyhu", "trump"]
for name in test_names:
result = classifier(name)
label = result[0]['label']
score = result[0]['score']
print(f"Name: {name} => Prediction: {label}, Score: {score:.4f}")
```
**Output:**
```
Name: musk => Prediction: LABEL_1, Score: 0.9167
Name: zzzzzz => Prediction: LABEL_0, Score: 0.9991
Name: uhyhu => Prediction: LABEL_0, Score: 0.9944
Name: trump => Prediction: LABEL_1, Score: 0.9998
```
## Support Us
[](https://nowpayments.io/donation/Vishodi)
## License
This project is licensed under the MIT License. |