visalkao commited on
Commit
be5a6cc
·
1 Parent(s): 10c48fa

Initial model upload

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +202 -0
  2. adapter_config.json +37 -0
  3. adapter_model.safetensors +3 -0
  4. checkpoint-1282/README.md +202 -0
  5. checkpoint-1282/adapter_config.json +37 -0
  6. checkpoint-1282/adapter_model.safetensors +3 -0
  7. checkpoint-1282/optimizer.pt +3 -0
  8. checkpoint-1282/preprocessor_config.json +14 -0
  9. checkpoint-1282/rng_state.pth +3 -0
  10. checkpoint-1282/scaler.pt +3 -0
  11. checkpoint-1282/scheduler.pt +3 -0
  12. checkpoint-1282/trainer_state.json +938 -0
  13. checkpoint-1282/training_args.bin +3 -0
  14. checkpoint-2564/README.md +202 -0
  15. checkpoint-2564/adapter_config.json +37 -0
  16. checkpoint-2564/adapter_model.safetensors +3 -0
  17. checkpoint-2564/optimizer.pt +3 -0
  18. checkpoint-2564/preprocessor_config.json +14 -0
  19. checkpoint-2564/rng_state.pth +3 -0
  20. checkpoint-2564/scaler.pt +3 -0
  21. checkpoint-2564/scheduler.pt +3 -0
  22. checkpoint-2564/trainer_state.json +1843 -0
  23. checkpoint-2564/training_args.bin +3 -0
  24. checkpoint-3846/README.md +202 -0
  25. checkpoint-3846/adapter_config.json +37 -0
  26. checkpoint-3846/adapter_model.safetensors +3 -0
  27. checkpoint-3846/optimizer.pt +3 -0
  28. checkpoint-3846/preprocessor_config.json +14 -0
  29. checkpoint-3846/rng_state.pth +3 -0
  30. checkpoint-3846/scaler.pt +3 -0
  31. checkpoint-3846/scheduler.pt +3 -0
  32. checkpoint-3846/trainer_state.json +2748 -0
  33. checkpoint-3846/training_args.bin +3 -0
  34. checkpoint-5128/README.md +202 -0
  35. checkpoint-5128/adapter_config.json +37 -0
  36. checkpoint-5128/adapter_model.safetensors +3 -0
  37. checkpoint-5128/optimizer.pt +3 -0
  38. checkpoint-5128/preprocessor_config.json +14 -0
  39. checkpoint-5128/rng_state.pth +3 -0
  40. checkpoint-5128/scaler.pt +3 -0
  41. checkpoint-5128/scheduler.pt +3 -0
  42. checkpoint-5128/trainer_state.json +3653 -0
  43. checkpoint-5128/training_args.bin +3 -0
  44. checkpoint-6410/README.md +202 -0
  45. checkpoint-6410/adapter_config.json +37 -0
  46. checkpoint-6410/adapter_model.safetensors +3 -0
  47. checkpoint-6410/optimizer.pt +3 -0
  48. checkpoint-6410/preprocessor_config.json +14 -0
  49. checkpoint-6410/rng_state.pth +3 -0
  50. checkpoint-6410/scaler.pt +3 -0
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openai/whisper-small
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.1
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "WhisperForConditionalGeneration",
5
+ "parent_library": "transformers.models.whisper.modeling_whisper"
6
+ },
7
+ "base_model_name_or_path": "openai/whisper-small",
8
+ "bias": "none",
9
+ "corda_config": null,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 64,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "r": 32,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "q_proj",
31
+ "v_proj"
32
+ ],
33
+ "task_type": null,
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05c62ba82b49d5530cb59a6660f691542857584997a011ed9991d3fb8d3a93e9
3
+ size 14176064
checkpoint-1282/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openai/whisper-small
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.1
checkpoint-1282/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "WhisperForConditionalGeneration",
5
+ "parent_library": "transformers.models.whisper.modeling_whisper"
6
+ },
7
+ "base_model_name_or_path": "openai/whisper-small",
8
+ "bias": "none",
9
+ "corda_config": null,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 64,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "r": 32,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "q_proj",
31
+ "v_proj"
32
+ ],
33
+ "task_type": null,
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-1282/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82b2e92985d3234a43c270820c04a56fd7d33c101571a985789bfcc3d72940e7
3
+ size 14176064
checkpoint-1282/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4406a14dda35216d56130bd385ed45523e6ef9311405f7a871124af1d2639a61
3
+ size 28432570
checkpoint-1282/preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
checkpoint-1282/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47d11c8794792252f10f0d90106a215a71081e57908e27af545a6ca3bffac4e3
3
+ size 14244
checkpoint-1282/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83d6806c71e0146991e30f44773eeb503604e704766e0fd5e522689319ba0acf
3
+ size 988
checkpoint-1282/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bc09cf0b7de1c8eefda4c397cba706f60486de08de54f5db5e1b8f67f3d4295
3
+ size 1064
checkpoint-1282/trainer_state.json ADDED
@@ -0,0 +1,938 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 1282,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0078003120124804995,
13
+ "grad_norm": 2.144841432571411,
14
+ "learning_rate": 0.0009989971027412525,
15
+ "loss": 1.1174,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.015600624024960999,
20
+ "grad_norm": 1.0625462532043457,
21
+ "learning_rate": 0.0009978827724537553,
22
+ "loss": 0.5035,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.0234009360374415,
27
+ "grad_norm": 1.619573950767517,
28
+ "learning_rate": 0.0009967684421662581,
29
+ "loss": 0.3841,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.031201248049921998,
34
+ "grad_norm": 3.2681403160095215,
35
+ "learning_rate": 0.000995654111878761,
36
+ "loss": 0.4974,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.0390015600624025,
41
+ "grad_norm": 1.5944786071777344,
42
+ "learning_rate": 0.0009945397815912637,
43
+ "loss": 0.4797,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.046801872074883,
48
+ "grad_norm": 1.8234444856643677,
49
+ "learning_rate": 0.0009934254513037665,
50
+ "loss": 0.637,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.054602184087363496,
55
+ "grad_norm": 3.790844440460205,
56
+ "learning_rate": 0.0009923111210162691,
57
+ "loss": 0.4479,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.062402496099843996,
62
+ "grad_norm": 2.9351046085357666,
63
+ "learning_rate": 0.000991196790728772,
64
+ "loss": 0.4332,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07020280811232449,
69
+ "grad_norm": 2.2770025730133057,
70
+ "learning_rate": 0.0009900824604412747,
71
+ "loss": 0.4399,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.078003120124805,
76
+ "grad_norm": 1.86591637134552,
77
+ "learning_rate": 0.0009889681301537775,
78
+ "loss": 0.407,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.08580343213728549,
83
+ "grad_norm": 1.6851640939712524,
84
+ "learning_rate": 0.0009878537998662805,
85
+ "loss": 0.3862,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.093603744149766,
90
+ "grad_norm": 2.5469818115234375,
91
+ "learning_rate": 0.0009867394695787831,
92
+ "loss": 0.4166,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.10140405616224649,
97
+ "grad_norm": 1.8210259675979614,
98
+ "learning_rate": 0.000985625139291286,
99
+ "loss": 0.3785,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.10920436817472699,
104
+ "grad_norm": 2.031057119369507,
105
+ "learning_rate": 0.0009845108090037887,
106
+ "loss": 0.4177,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.11700468018720749,
111
+ "grad_norm": 1.6646612882614136,
112
+ "learning_rate": 0.0009833964787162915,
113
+ "loss": 0.402,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.12480499219968799,
118
+ "grad_norm": 1.8680285215377808,
119
+ "learning_rate": 0.0009822821484287943,
120
+ "loss": 0.3282,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.13260530421216848,
125
+ "grad_norm": 1.8039604425430298,
126
+ "learning_rate": 0.0009811678181412971,
127
+ "loss": 0.3536,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.14040561622464898,
132
+ "grad_norm": 3.3018901348114014,
133
+ "learning_rate": 0.0009800534878538,
134
+ "loss": 0.4595,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.1482059282371295,
139
+ "grad_norm": 3.684013843536377,
140
+ "learning_rate": 0.0009789391575663027,
141
+ "loss": 0.4288,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.15600624024961,
146
+ "grad_norm": 1.4512592554092407,
147
+ "learning_rate": 0.0009778248272788055,
148
+ "loss": 0.5086,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.16380655226209048,
153
+ "grad_norm": 2.3981761932373047,
154
+ "learning_rate": 0.0009767104969913081,
155
+ "loss": 0.4084,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.17160686427457097,
160
+ "grad_norm": 3.7943010330200195,
161
+ "learning_rate": 0.000975596166703811,
162
+ "loss": 0.4524,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.1794071762870515,
167
+ "grad_norm": 2.657606840133667,
168
+ "learning_rate": 0.0009744818364163138,
169
+ "loss": 0.3592,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.187207488299532,
174
+ "grad_norm": 2.7629363536834717,
175
+ "learning_rate": 0.0009733675061288166,
176
+ "loss": 0.4263,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.19500780031201248,
181
+ "grad_norm": 1.3749983310699463,
182
+ "learning_rate": 0.0009722531758413193,
183
+ "loss": 0.48,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.20280811232449297,
188
+ "grad_norm": 2.648716449737549,
189
+ "learning_rate": 0.0009711388455538221,
190
+ "loss": 0.416,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.21060842433697347,
195
+ "grad_norm": 1.5672308206558228,
196
+ "learning_rate": 0.0009700245152663249,
197
+ "loss": 0.4223,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.21840873634945399,
202
+ "grad_norm": 2.618163585662842,
203
+ "learning_rate": 0.0009689101849788277,
204
+ "loss": 0.4172,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.22620904836193448,
209
+ "grad_norm": 3.6365268230438232,
210
+ "learning_rate": 0.0009677958546913305,
211
+ "loss": 0.5501,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.23400936037441497,
216
+ "grad_norm": 2.740039825439453,
217
+ "learning_rate": 0.0009666815244038332,
218
+ "loss": 0.3553,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.24180967238689546,
223
+ "grad_norm": 3.406210422515869,
224
+ "learning_rate": 0.000965567194116336,
225
+ "loss": 0.3518,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.24960998439937598,
230
+ "grad_norm": 1.4707075357437134,
231
+ "learning_rate": 0.000964452863828839,
232
+ "loss": 0.3452,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.2574102964118565,
237
+ "grad_norm": 1.608324408531189,
238
+ "learning_rate": 0.0009633385335413417,
239
+ "loss": 0.4908,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.26521060842433697,
244
+ "grad_norm": 4.090480327606201,
245
+ "learning_rate": 0.0009622242032538444,
246
+ "loss": 0.4597,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.27301092043681746,
251
+ "grad_norm": 2.2214395999908447,
252
+ "learning_rate": 0.0009611098729663472,
253
+ "loss": 0.4552,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.28081123244929795,
258
+ "grad_norm": 1.9134166240692139,
259
+ "learning_rate": 0.00095999554267885,
260
+ "loss": 0.3571,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.28861154446177845,
265
+ "grad_norm": 1.8127851486206055,
266
+ "learning_rate": 0.0009588812123913528,
267
+ "loss": 0.3808,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.296411856474259,
272
+ "grad_norm": 2.2262885570526123,
273
+ "learning_rate": 0.0009577668821038556,
274
+ "loss": 0.4099,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3042121684867395,
279
+ "grad_norm": 2.8041303157806396,
280
+ "learning_rate": 0.0009566525518163583,
281
+ "loss": 0.3988,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.31201248049922,
286
+ "grad_norm": 6.797432899475098,
287
+ "learning_rate": 0.0009555382215288611,
288
+ "loss": 0.4728,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.31981279251170047,
293
+ "grad_norm": 3.1861369609832764,
294
+ "learning_rate": 0.000954423891241364,
295
+ "loss": 0.3502,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.32761310452418096,
300
+ "grad_norm": 2.9223642349243164,
301
+ "learning_rate": 0.0009533095609538667,
302
+ "loss": 0.4215,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.33541341653666146,
307
+ "grad_norm": 6.848895072937012,
308
+ "learning_rate": 0.0009521952306663694,
309
+ "loss": 0.415,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.34321372854914195,
314
+ "grad_norm": 9.054282188415527,
315
+ "learning_rate": 0.0009510809003788722,
316
+ "loss": 0.4667,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.35101404056162244,
321
+ "grad_norm": 2.3005900382995605,
322
+ "learning_rate": 0.0009499665700913752,
323
+ "loss": 0.6565,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.358814352574103,
328
+ "grad_norm": 2.9467573165893555,
329
+ "learning_rate": 0.000948852239803878,
330
+ "loss": 0.3837,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.3666146645865835,
335
+ "grad_norm": 1.5977652072906494,
336
+ "learning_rate": 0.0009477379095163808,
337
+ "loss": 0.407,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.374414976599064,
342
+ "grad_norm": 2.8274600505828857,
343
+ "learning_rate": 0.0009466235792288835,
344
+ "loss": 0.4501,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.38221528861154447,
349
+ "grad_norm": 1.8566502332687378,
350
+ "learning_rate": 0.0009455092489413863,
351
+ "loss": 0.3146,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.39001560062402496,
356
+ "grad_norm": 2.5871951580047607,
357
+ "learning_rate": 0.0009443949186538891,
358
+ "loss": 0.3335,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.39781591263650545,
363
+ "grad_norm": 2.0552711486816406,
364
+ "learning_rate": 0.0009432805883663919,
365
+ "loss": 0.3698,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.40561622464898595,
370
+ "grad_norm": 1.5244548320770264,
371
+ "learning_rate": 0.0009421662580788946,
372
+ "loss": 0.581,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.41341653666146644,
377
+ "grad_norm": 1.5146633386611938,
378
+ "learning_rate": 0.0009410519277913974,
379
+ "loss": 0.3634,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.42121684867394693,
384
+ "grad_norm": 2.394819736480713,
385
+ "learning_rate": 0.0009399375975039002,
386
+ "loss": 0.338,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.4290171606864275,
391
+ "grad_norm": 2.3500325679779053,
392
+ "learning_rate": 0.000938823267216403,
393
+ "loss": 0.4025,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.43681747269890797,
398
+ "grad_norm": 2.4186370372772217,
399
+ "learning_rate": 0.0009377089369289058,
400
+ "loss": 0.4095,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.44461778471138846,
405
+ "grad_norm": 1.9770065546035767,
406
+ "learning_rate": 0.0009365946066414085,
407
+ "loss": 0.4275,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.45241809672386896,
412
+ "grad_norm": 1.7679632902145386,
413
+ "learning_rate": 0.0009354802763539114,
414
+ "loss": 0.3949,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.46021840873634945,
419
+ "grad_norm": 2.0794620513916016,
420
+ "learning_rate": 0.0009343659460664142,
421
+ "loss": 0.4208,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.46801872074882994,
426
+ "grad_norm": 2.677424192428589,
427
+ "learning_rate": 0.000933251615778917,
428
+ "loss": 0.4089,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.47581903276131043,
433
+ "grad_norm": 1.526112675666809,
434
+ "learning_rate": 0.0009321372854914197,
435
+ "loss": 0.4196,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.4836193447737909,
440
+ "grad_norm": 1.8656370639801025,
441
+ "learning_rate": 0.0009310229552039225,
442
+ "loss": 0.3732,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.4914196567862715,
447
+ "grad_norm": 3.3338847160339355,
448
+ "learning_rate": 0.0009299086249164253,
449
+ "loss": 0.4231,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.49921996879875197,
454
+ "grad_norm": 2.1057350635528564,
455
+ "learning_rate": 0.0009287942946289281,
456
+ "loss": 0.3921,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.5070202808112324,
461
+ "grad_norm": 1.544977068901062,
462
+ "learning_rate": 0.0009276799643414309,
463
+ "loss": 0.3748,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.514820592823713,
468
+ "grad_norm": 3.4070258140563965,
469
+ "learning_rate": 0.0009265656340539336,
470
+ "loss": 0.4027,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5226209048361935,
475
+ "grad_norm": 5.5486931800842285,
476
+ "learning_rate": 0.0009254513037664364,
477
+ "loss": 0.4326,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.5304212168486739,
482
+ "grad_norm": 3.6824769973754883,
483
+ "learning_rate": 0.0009243369734789392,
484
+ "loss": 0.4809,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5382215288611545,
489
+ "grad_norm": 6.3154778480529785,
490
+ "learning_rate": 0.000923222643191442,
491
+ "loss": 0.3588,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.5460218408736349,
496
+ "grad_norm": 3.133465528488159,
497
+ "learning_rate": 0.0009221083129039447,
498
+ "loss": 0.4712,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.5538221528861155,
503
+ "grad_norm": 4.222598552703857,
504
+ "learning_rate": 0.0009209939826164475,
505
+ "loss": 0.4135,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.5616224648985959,
510
+ "grad_norm": 4.6125078201293945,
511
+ "learning_rate": 0.0009198796523289504,
512
+ "loss": 0.393,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.5694227769110765,
517
+ "grad_norm": 6.543318748474121,
518
+ "learning_rate": 0.0009187653220414532,
519
+ "loss": 0.6138,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.5772230889235569,
524
+ "grad_norm": 2.596463680267334,
525
+ "learning_rate": 0.000917650991753956,
526
+ "loss": 0.3694,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.5850234009360374,
531
+ "grad_norm": 2.428490161895752,
532
+ "learning_rate": 0.0009165366614664587,
533
+ "loss": 0.4535,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.592823712948518,
538
+ "grad_norm": 1.8790688514709473,
539
+ "learning_rate": 0.0009154223311789615,
540
+ "loss": 0.3986,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6006240249609984,
545
+ "grad_norm": 3.141587734222412,
546
+ "learning_rate": 0.0009143080008914643,
547
+ "loss": 0.3881,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.608424336973479,
552
+ "grad_norm": 2.125810146331787,
553
+ "learning_rate": 0.0009131936706039671,
554
+ "loss": 0.4225,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.6162246489859594,
559
+ "grad_norm": 2.532404661178589,
560
+ "learning_rate": 0.0009120793403164698,
561
+ "loss": 0.3423,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.62402496099844,
566
+ "grad_norm": 3.6324350833892822,
567
+ "learning_rate": 0.0009109650100289726,
568
+ "loss": 0.4205,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6318252730109204,
573
+ "grad_norm": 1.4804415702819824,
574
+ "learning_rate": 0.0009098506797414754,
575
+ "loss": 0.4042,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.6396255850234009,
580
+ "grad_norm": 1.5140562057495117,
581
+ "learning_rate": 0.0009087363494539782,
582
+ "loss": 0.3056,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.6474258970358814,
587
+ "grad_norm": 2.470576047897339,
588
+ "learning_rate": 0.000907622019166481,
589
+ "loss": 0.391,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.6552262090483619,
594
+ "grad_norm": 3.4496209621429443,
595
+ "learning_rate": 0.0009065076888789837,
596
+ "loss": 0.4163,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.6630265210608425,
601
+ "grad_norm": 1.8823250532150269,
602
+ "learning_rate": 0.0009053933585914866,
603
+ "loss": 0.3877,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.6708268330733229,
608
+ "grad_norm": 2.492297410964966,
609
+ "learning_rate": 0.0009042790283039894,
610
+ "loss": 0.3542,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.6786271450858035,
615
+ "grad_norm": 3.977569341659546,
616
+ "learning_rate": 0.0009031646980164922,
617
+ "loss": 0.4168,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.6864274570982839,
622
+ "grad_norm": 3.938462495803833,
623
+ "learning_rate": 0.0009020503677289949,
624
+ "loss": 0.4894,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.6942277691107644,
629
+ "grad_norm": 1.3457701206207275,
630
+ "learning_rate": 0.0009009360374414977,
631
+ "loss": 0.4903,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7020280811232449,
636
+ "grad_norm": 6.3473124504089355,
637
+ "learning_rate": 0.0008998217071540005,
638
+ "loss": 0.4766,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7098283931357254,
643
+ "grad_norm": 3.145792245864868,
644
+ "learning_rate": 0.0008987073768665033,
645
+ "loss": 0.4119,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.717628705148206,
650
+ "grad_norm": 1.809446930885315,
651
+ "learning_rate": 0.0008975930465790061,
652
+ "loss": 0.3991,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.7254290171606864,
657
+ "grad_norm": 1.7960044145584106,
658
+ "learning_rate": 0.0008964787162915088,
659
+ "loss": 0.3095,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.733229329173167,
664
+ "grad_norm": 2.9710285663604736,
665
+ "learning_rate": 0.0008953643860040116,
666
+ "loss": 0.5104,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.7410296411856474,
671
+ "grad_norm": 2.460524797439575,
672
+ "learning_rate": 0.0008942500557165144,
673
+ "loss": 0.4332,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.748829953198128,
678
+ "grad_norm": 1.6166704893112183,
679
+ "learning_rate": 0.0008931357254290172,
680
+ "loss": 0.3856,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.7566302652106084,
685
+ "grad_norm": 1.747750163078308,
686
+ "learning_rate": 0.0008920213951415199,
687
+ "loss": 0.3973,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.7644305772230889,
692
+ "grad_norm": 1.4469414949417114,
693
+ "learning_rate": 0.0008909070648540227,
694
+ "loss": 0.3344,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.7722308892355694,
699
+ "grad_norm": 4.661273956298828,
700
+ "learning_rate": 0.0008897927345665256,
701
+ "loss": 0.6003,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.7800312012480499,
706
+ "grad_norm": 3.6588950157165527,
707
+ "learning_rate": 0.0008886784042790284,
708
+ "loss": 0.473,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.7878315132605305,
713
+ "grad_norm": 2.208383798599243,
714
+ "learning_rate": 0.0008876755070202809,
715
+ "loss": 0.3899,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.7956318252730109,
720
+ "grad_norm": 2.3569576740264893,
721
+ "learning_rate": 0.0008865611767327836,
722
+ "loss": 0.3871,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8034321372854915,
727
+ "grad_norm": 2.7071454524993896,
728
+ "learning_rate": 0.0008854468464452864,
729
+ "loss": 0.3149,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8112324492979719,
734
+ "grad_norm": 2.8024532794952393,
735
+ "learning_rate": 0.0008843325161577892,
736
+ "loss": 0.3328,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.8190327613104524,
741
+ "grad_norm": 3.0969290733337402,
742
+ "learning_rate": 0.000883218185870292,
743
+ "loss": 0.3948,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.8268330733229329,
748
+ "grad_norm": 2.982484817504883,
749
+ "learning_rate": 0.0008821038555827947,
750
+ "loss": 0.4323,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.8346333853354134,
755
+ "grad_norm": 3.133814573287964,
756
+ "learning_rate": 0.0008809895252952975,
757
+ "loss": 0.4393,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.8424336973478939,
762
+ "grad_norm": 3.3123364448547363,
763
+ "learning_rate": 0.0008798751950078003,
764
+ "loss": 0.3244,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.8502340093603744,
769
+ "grad_norm": 2.308555841445923,
770
+ "learning_rate": 0.0008787608647203032,
771
+ "loss": 0.424,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.858034321372855,
776
+ "grad_norm": 3.654137134552002,
777
+ "learning_rate": 0.000877646534432806,
778
+ "loss": 0.3445,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.8658346333853354,
783
+ "grad_norm": 2.149843692779541,
784
+ "learning_rate": 0.0008765322041453087,
785
+ "loss": 0.3398,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.8736349453978159,
790
+ "grad_norm": 3.1334431171417236,
791
+ "learning_rate": 0.0008754178738578115,
792
+ "loss": 0.3333,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.8814352574102964,
797
+ "grad_norm": 2.2942090034484863,
798
+ "learning_rate": 0.0008743035435703143,
799
+ "loss": 0.4188,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.8892355694227769,
804
+ "grad_norm": 2.0195343494415283,
805
+ "learning_rate": 0.0008731892132828171,
806
+ "loss": 0.4047,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.8970358814352574,
811
+ "grad_norm": 2.3850839138031006,
812
+ "learning_rate": 0.0008720748829953198,
813
+ "loss": 0.3931,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.9048361934477379,
818
+ "grad_norm": 1.6200228929519653,
819
+ "learning_rate": 0.0008709605527078226,
820
+ "loss": 0.409,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.9126365054602185,
825
+ "grad_norm": 2.9001989364624023,
826
+ "learning_rate": 0.0008698462224203254,
827
+ "loss": 0.4289,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.9204368174726989,
832
+ "grad_norm": 1.52889883518219,
833
+ "learning_rate": 0.0008687318921328282,
834
+ "loss": 0.3575,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.9282371294851794,
839
+ "grad_norm": 2.359733819961548,
840
+ "learning_rate": 0.000867617561845331,
841
+ "loss": 0.3837,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.9360374414976599,
846
+ "grad_norm": 2.3807597160339355,
847
+ "learning_rate": 0.0008665032315578337,
848
+ "loss": 0.4206,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.9438377535101404,
853
+ "grad_norm": 1.8366179466247559,
854
+ "learning_rate": 0.0008653889012703365,
855
+ "loss": 0.3101,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.9516380655226209,
860
+ "grad_norm": 3.1048014163970947,
861
+ "learning_rate": 0.0008642745709828393,
862
+ "loss": 0.4104,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.9594383775351014,
867
+ "grad_norm": 1.5314342975616455,
868
+ "learning_rate": 0.0008631602406953422,
869
+ "loss": 0.3539,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.9672386895475819,
874
+ "grad_norm": 2.8501791954040527,
875
+ "learning_rate": 0.0008620459104078449,
876
+ "loss": 0.4104,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.9750390015600624,
881
+ "grad_norm": 5.708191394805908,
882
+ "learning_rate": 0.0008609315801203477,
883
+ "loss": 0.4038,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.982839313572543,
888
+ "grad_norm": 2.173867702484131,
889
+ "learning_rate": 0.0008598172498328505,
890
+ "loss": 0.338,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.9906396255850234,
895
+ "grad_norm": 2.7057418823242188,
896
+ "learning_rate": 0.0008587029195453533,
897
+ "loss": 0.3941,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.9984399375975039,
902
+ "grad_norm": 1.3492989540100098,
903
+ "learning_rate": 0.0008575885892578561,
904
+ "loss": 0.3696,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 1.0,
909
+ "eval_loss": 0.4044143855571747,
910
+ "eval_runtime": 635.8286,
911
+ "eval_samples_per_second": 0.865,
912
+ "eval_steps_per_second": 0.865,
913
+ "eval_wer": 26.665379416875844,
914
+ "step": 1282
915
+ }
916
+ ],
917
+ "logging_steps": 10,
918
+ "max_steps": 8974,
919
+ "num_input_tokens_seen": 0,
920
+ "num_train_epochs": 7,
921
+ "save_steps": 500,
922
+ "stateful_callbacks": {
923
+ "TrainerControl": {
924
+ "args": {
925
+ "should_epoch_stop": false,
926
+ "should_evaluate": false,
927
+ "should_log": false,
928
+ "should_save": true,
929
+ "should_training_stop": false
930
+ },
931
+ "attributes": {}
932
+ }
933
+ },
934
+ "total_flos": 1.12949897084928e+18,
935
+ "train_batch_size": 3,
936
+ "trial_name": null,
937
+ "trial_params": null
938
+ }
checkpoint-1282/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87bdde76802c6f6975c7a62016872baaa0d2d042f00a6968d4a9fadade014aa7
3
+ size 5432
checkpoint-2564/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openai/whisper-small
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.1
checkpoint-2564/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "WhisperForConditionalGeneration",
5
+ "parent_library": "transformers.models.whisper.modeling_whisper"
6
+ },
7
+ "base_model_name_or_path": "openai/whisper-small",
8
+ "bias": "none",
9
+ "corda_config": null,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 64,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "r": 32,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "q_proj",
31
+ "v_proj"
32
+ ],
33
+ "task_type": null,
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-2564/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f17d5065d8eda1b950862c985a0732f25bc23d36f055704bf9b1b3f6b721105
3
+ size 14176064
checkpoint-2564/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72752c6151e44f5621b4b0bd7ff5123dc5aaa03c691cdc294f7a04474ba89f46
3
+ size 28432570
checkpoint-2564/preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
checkpoint-2564/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:368f5ba3422484c4c03ee3552e25e2e96767e49b156f4bad0bf0eb89a7f32c1a
3
+ size 14244
checkpoint-2564/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:650a92621c02c276880616f57763587540819bc02f9bc2826dfa7c6bf9546b4a
3
+ size 988
checkpoint-2564/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6976c8664acd082a8fdcda4af5691a792f52438851c190626d6ba42568d3ee3
3
+ size 1064
checkpoint-2564/trainer_state.json ADDED
@@ -0,0 +1,1843 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2564,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0078003120124804995,
13
+ "grad_norm": 2.144841432571411,
14
+ "learning_rate": 0.0009989971027412525,
15
+ "loss": 1.1174,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.015600624024960999,
20
+ "grad_norm": 1.0625462532043457,
21
+ "learning_rate": 0.0009978827724537553,
22
+ "loss": 0.5035,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.0234009360374415,
27
+ "grad_norm": 1.619573950767517,
28
+ "learning_rate": 0.0009967684421662581,
29
+ "loss": 0.3841,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.031201248049921998,
34
+ "grad_norm": 3.2681403160095215,
35
+ "learning_rate": 0.000995654111878761,
36
+ "loss": 0.4974,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.0390015600624025,
41
+ "grad_norm": 1.5944786071777344,
42
+ "learning_rate": 0.0009945397815912637,
43
+ "loss": 0.4797,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.046801872074883,
48
+ "grad_norm": 1.8234444856643677,
49
+ "learning_rate": 0.0009934254513037665,
50
+ "loss": 0.637,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.054602184087363496,
55
+ "grad_norm": 3.790844440460205,
56
+ "learning_rate": 0.0009923111210162691,
57
+ "loss": 0.4479,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.062402496099843996,
62
+ "grad_norm": 2.9351046085357666,
63
+ "learning_rate": 0.000991196790728772,
64
+ "loss": 0.4332,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07020280811232449,
69
+ "grad_norm": 2.2770025730133057,
70
+ "learning_rate": 0.0009900824604412747,
71
+ "loss": 0.4399,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.078003120124805,
76
+ "grad_norm": 1.86591637134552,
77
+ "learning_rate": 0.0009889681301537775,
78
+ "loss": 0.407,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.08580343213728549,
83
+ "grad_norm": 1.6851640939712524,
84
+ "learning_rate": 0.0009878537998662805,
85
+ "loss": 0.3862,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.093603744149766,
90
+ "grad_norm": 2.5469818115234375,
91
+ "learning_rate": 0.0009867394695787831,
92
+ "loss": 0.4166,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.10140405616224649,
97
+ "grad_norm": 1.8210259675979614,
98
+ "learning_rate": 0.000985625139291286,
99
+ "loss": 0.3785,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.10920436817472699,
104
+ "grad_norm": 2.031057119369507,
105
+ "learning_rate": 0.0009845108090037887,
106
+ "loss": 0.4177,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.11700468018720749,
111
+ "grad_norm": 1.6646612882614136,
112
+ "learning_rate": 0.0009833964787162915,
113
+ "loss": 0.402,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.12480499219968799,
118
+ "grad_norm": 1.8680285215377808,
119
+ "learning_rate": 0.0009822821484287943,
120
+ "loss": 0.3282,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.13260530421216848,
125
+ "grad_norm": 1.8039604425430298,
126
+ "learning_rate": 0.0009811678181412971,
127
+ "loss": 0.3536,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.14040561622464898,
132
+ "grad_norm": 3.3018901348114014,
133
+ "learning_rate": 0.0009800534878538,
134
+ "loss": 0.4595,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.1482059282371295,
139
+ "grad_norm": 3.684013843536377,
140
+ "learning_rate": 0.0009789391575663027,
141
+ "loss": 0.4288,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.15600624024961,
146
+ "grad_norm": 1.4512592554092407,
147
+ "learning_rate": 0.0009778248272788055,
148
+ "loss": 0.5086,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.16380655226209048,
153
+ "grad_norm": 2.3981761932373047,
154
+ "learning_rate": 0.0009767104969913081,
155
+ "loss": 0.4084,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.17160686427457097,
160
+ "grad_norm": 3.7943010330200195,
161
+ "learning_rate": 0.000975596166703811,
162
+ "loss": 0.4524,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.1794071762870515,
167
+ "grad_norm": 2.657606840133667,
168
+ "learning_rate": 0.0009744818364163138,
169
+ "loss": 0.3592,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.187207488299532,
174
+ "grad_norm": 2.7629363536834717,
175
+ "learning_rate": 0.0009733675061288166,
176
+ "loss": 0.4263,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.19500780031201248,
181
+ "grad_norm": 1.3749983310699463,
182
+ "learning_rate": 0.0009722531758413193,
183
+ "loss": 0.48,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.20280811232449297,
188
+ "grad_norm": 2.648716449737549,
189
+ "learning_rate": 0.0009711388455538221,
190
+ "loss": 0.416,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.21060842433697347,
195
+ "grad_norm": 1.5672308206558228,
196
+ "learning_rate": 0.0009700245152663249,
197
+ "loss": 0.4223,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.21840873634945399,
202
+ "grad_norm": 2.618163585662842,
203
+ "learning_rate": 0.0009689101849788277,
204
+ "loss": 0.4172,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.22620904836193448,
209
+ "grad_norm": 3.6365268230438232,
210
+ "learning_rate": 0.0009677958546913305,
211
+ "loss": 0.5501,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.23400936037441497,
216
+ "grad_norm": 2.740039825439453,
217
+ "learning_rate": 0.0009666815244038332,
218
+ "loss": 0.3553,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.24180967238689546,
223
+ "grad_norm": 3.406210422515869,
224
+ "learning_rate": 0.000965567194116336,
225
+ "loss": 0.3518,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.24960998439937598,
230
+ "grad_norm": 1.4707075357437134,
231
+ "learning_rate": 0.000964452863828839,
232
+ "loss": 0.3452,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.2574102964118565,
237
+ "grad_norm": 1.608324408531189,
238
+ "learning_rate": 0.0009633385335413417,
239
+ "loss": 0.4908,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.26521060842433697,
244
+ "grad_norm": 4.090480327606201,
245
+ "learning_rate": 0.0009622242032538444,
246
+ "loss": 0.4597,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.27301092043681746,
251
+ "grad_norm": 2.2214395999908447,
252
+ "learning_rate": 0.0009611098729663472,
253
+ "loss": 0.4552,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.28081123244929795,
258
+ "grad_norm": 1.9134166240692139,
259
+ "learning_rate": 0.00095999554267885,
260
+ "loss": 0.3571,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.28861154446177845,
265
+ "grad_norm": 1.8127851486206055,
266
+ "learning_rate": 0.0009588812123913528,
267
+ "loss": 0.3808,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.296411856474259,
272
+ "grad_norm": 2.2262885570526123,
273
+ "learning_rate": 0.0009577668821038556,
274
+ "loss": 0.4099,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3042121684867395,
279
+ "grad_norm": 2.8041303157806396,
280
+ "learning_rate": 0.0009566525518163583,
281
+ "loss": 0.3988,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.31201248049922,
286
+ "grad_norm": 6.797432899475098,
287
+ "learning_rate": 0.0009555382215288611,
288
+ "loss": 0.4728,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.31981279251170047,
293
+ "grad_norm": 3.1861369609832764,
294
+ "learning_rate": 0.000954423891241364,
295
+ "loss": 0.3502,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.32761310452418096,
300
+ "grad_norm": 2.9223642349243164,
301
+ "learning_rate": 0.0009533095609538667,
302
+ "loss": 0.4215,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.33541341653666146,
307
+ "grad_norm": 6.848895072937012,
308
+ "learning_rate": 0.0009521952306663694,
309
+ "loss": 0.415,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.34321372854914195,
314
+ "grad_norm": 9.054282188415527,
315
+ "learning_rate": 0.0009510809003788722,
316
+ "loss": 0.4667,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.35101404056162244,
321
+ "grad_norm": 2.3005900382995605,
322
+ "learning_rate": 0.0009499665700913752,
323
+ "loss": 0.6565,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.358814352574103,
328
+ "grad_norm": 2.9467573165893555,
329
+ "learning_rate": 0.000948852239803878,
330
+ "loss": 0.3837,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.3666146645865835,
335
+ "grad_norm": 1.5977652072906494,
336
+ "learning_rate": 0.0009477379095163808,
337
+ "loss": 0.407,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.374414976599064,
342
+ "grad_norm": 2.8274600505828857,
343
+ "learning_rate": 0.0009466235792288835,
344
+ "loss": 0.4501,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.38221528861154447,
349
+ "grad_norm": 1.8566502332687378,
350
+ "learning_rate": 0.0009455092489413863,
351
+ "loss": 0.3146,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.39001560062402496,
356
+ "grad_norm": 2.5871951580047607,
357
+ "learning_rate": 0.0009443949186538891,
358
+ "loss": 0.3335,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.39781591263650545,
363
+ "grad_norm": 2.0552711486816406,
364
+ "learning_rate": 0.0009432805883663919,
365
+ "loss": 0.3698,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.40561622464898595,
370
+ "grad_norm": 1.5244548320770264,
371
+ "learning_rate": 0.0009421662580788946,
372
+ "loss": 0.581,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.41341653666146644,
377
+ "grad_norm": 1.5146633386611938,
378
+ "learning_rate": 0.0009410519277913974,
379
+ "loss": 0.3634,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.42121684867394693,
384
+ "grad_norm": 2.394819736480713,
385
+ "learning_rate": 0.0009399375975039002,
386
+ "loss": 0.338,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.4290171606864275,
391
+ "grad_norm": 2.3500325679779053,
392
+ "learning_rate": 0.000938823267216403,
393
+ "loss": 0.4025,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.43681747269890797,
398
+ "grad_norm": 2.4186370372772217,
399
+ "learning_rate": 0.0009377089369289058,
400
+ "loss": 0.4095,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.44461778471138846,
405
+ "grad_norm": 1.9770065546035767,
406
+ "learning_rate": 0.0009365946066414085,
407
+ "loss": 0.4275,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.45241809672386896,
412
+ "grad_norm": 1.7679632902145386,
413
+ "learning_rate": 0.0009354802763539114,
414
+ "loss": 0.3949,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.46021840873634945,
419
+ "grad_norm": 2.0794620513916016,
420
+ "learning_rate": 0.0009343659460664142,
421
+ "loss": 0.4208,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.46801872074882994,
426
+ "grad_norm": 2.677424192428589,
427
+ "learning_rate": 0.000933251615778917,
428
+ "loss": 0.4089,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.47581903276131043,
433
+ "grad_norm": 1.526112675666809,
434
+ "learning_rate": 0.0009321372854914197,
435
+ "loss": 0.4196,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.4836193447737909,
440
+ "grad_norm": 1.8656370639801025,
441
+ "learning_rate": 0.0009310229552039225,
442
+ "loss": 0.3732,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.4914196567862715,
447
+ "grad_norm": 3.3338847160339355,
448
+ "learning_rate": 0.0009299086249164253,
449
+ "loss": 0.4231,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.49921996879875197,
454
+ "grad_norm": 2.1057350635528564,
455
+ "learning_rate": 0.0009287942946289281,
456
+ "loss": 0.3921,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.5070202808112324,
461
+ "grad_norm": 1.544977068901062,
462
+ "learning_rate": 0.0009276799643414309,
463
+ "loss": 0.3748,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.514820592823713,
468
+ "grad_norm": 3.4070258140563965,
469
+ "learning_rate": 0.0009265656340539336,
470
+ "loss": 0.4027,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5226209048361935,
475
+ "grad_norm": 5.5486931800842285,
476
+ "learning_rate": 0.0009254513037664364,
477
+ "loss": 0.4326,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.5304212168486739,
482
+ "grad_norm": 3.6824769973754883,
483
+ "learning_rate": 0.0009243369734789392,
484
+ "loss": 0.4809,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5382215288611545,
489
+ "grad_norm": 6.3154778480529785,
490
+ "learning_rate": 0.000923222643191442,
491
+ "loss": 0.3588,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.5460218408736349,
496
+ "grad_norm": 3.133465528488159,
497
+ "learning_rate": 0.0009221083129039447,
498
+ "loss": 0.4712,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.5538221528861155,
503
+ "grad_norm": 4.222598552703857,
504
+ "learning_rate": 0.0009209939826164475,
505
+ "loss": 0.4135,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.5616224648985959,
510
+ "grad_norm": 4.6125078201293945,
511
+ "learning_rate": 0.0009198796523289504,
512
+ "loss": 0.393,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.5694227769110765,
517
+ "grad_norm": 6.543318748474121,
518
+ "learning_rate": 0.0009187653220414532,
519
+ "loss": 0.6138,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.5772230889235569,
524
+ "grad_norm": 2.596463680267334,
525
+ "learning_rate": 0.000917650991753956,
526
+ "loss": 0.3694,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.5850234009360374,
531
+ "grad_norm": 2.428490161895752,
532
+ "learning_rate": 0.0009165366614664587,
533
+ "loss": 0.4535,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.592823712948518,
538
+ "grad_norm": 1.8790688514709473,
539
+ "learning_rate": 0.0009154223311789615,
540
+ "loss": 0.3986,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6006240249609984,
545
+ "grad_norm": 3.141587734222412,
546
+ "learning_rate": 0.0009143080008914643,
547
+ "loss": 0.3881,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.608424336973479,
552
+ "grad_norm": 2.125810146331787,
553
+ "learning_rate": 0.0009131936706039671,
554
+ "loss": 0.4225,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.6162246489859594,
559
+ "grad_norm": 2.532404661178589,
560
+ "learning_rate": 0.0009120793403164698,
561
+ "loss": 0.3423,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.62402496099844,
566
+ "grad_norm": 3.6324350833892822,
567
+ "learning_rate": 0.0009109650100289726,
568
+ "loss": 0.4205,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6318252730109204,
573
+ "grad_norm": 1.4804415702819824,
574
+ "learning_rate": 0.0009098506797414754,
575
+ "loss": 0.4042,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.6396255850234009,
580
+ "grad_norm": 1.5140562057495117,
581
+ "learning_rate": 0.0009087363494539782,
582
+ "loss": 0.3056,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.6474258970358814,
587
+ "grad_norm": 2.470576047897339,
588
+ "learning_rate": 0.000907622019166481,
589
+ "loss": 0.391,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.6552262090483619,
594
+ "grad_norm": 3.4496209621429443,
595
+ "learning_rate": 0.0009065076888789837,
596
+ "loss": 0.4163,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.6630265210608425,
601
+ "grad_norm": 1.8823250532150269,
602
+ "learning_rate": 0.0009053933585914866,
603
+ "loss": 0.3877,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.6708268330733229,
608
+ "grad_norm": 2.492297410964966,
609
+ "learning_rate": 0.0009042790283039894,
610
+ "loss": 0.3542,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.6786271450858035,
615
+ "grad_norm": 3.977569341659546,
616
+ "learning_rate": 0.0009031646980164922,
617
+ "loss": 0.4168,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.6864274570982839,
622
+ "grad_norm": 3.938462495803833,
623
+ "learning_rate": 0.0009020503677289949,
624
+ "loss": 0.4894,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.6942277691107644,
629
+ "grad_norm": 1.3457701206207275,
630
+ "learning_rate": 0.0009009360374414977,
631
+ "loss": 0.4903,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7020280811232449,
636
+ "grad_norm": 6.3473124504089355,
637
+ "learning_rate": 0.0008998217071540005,
638
+ "loss": 0.4766,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7098283931357254,
643
+ "grad_norm": 3.145792245864868,
644
+ "learning_rate": 0.0008987073768665033,
645
+ "loss": 0.4119,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.717628705148206,
650
+ "grad_norm": 1.809446930885315,
651
+ "learning_rate": 0.0008975930465790061,
652
+ "loss": 0.3991,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.7254290171606864,
657
+ "grad_norm": 1.7960044145584106,
658
+ "learning_rate": 0.0008964787162915088,
659
+ "loss": 0.3095,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.733229329173167,
664
+ "grad_norm": 2.9710285663604736,
665
+ "learning_rate": 0.0008953643860040116,
666
+ "loss": 0.5104,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.7410296411856474,
671
+ "grad_norm": 2.460524797439575,
672
+ "learning_rate": 0.0008942500557165144,
673
+ "loss": 0.4332,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.748829953198128,
678
+ "grad_norm": 1.6166704893112183,
679
+ "learning_rate": 0.0008931357254290172,
680
+ "loss": 0.3856,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.7566302652106084,
685
+ "grad_norm": 1.747750163078308,
686
+ "learning_rate": 0.0008920213951415199,
687
+ "loss": 0.3973,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.7644305772230889,
692
+ "grad_norm": 1.4469414949417114,
693
+ "learning_rate": 0.0008909070648540227,
694
+ "loss": 0.3344,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.7722308892355694,
699
+ "grad_norm": 4.661273956298828,
700
+ "learning_rate": 0.0008897927345665256,
701
+ "loss": 0.6003,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.7800312012480499,
706
+ "grad_norm": 3.6588950157165527,
707
+ "learning_rate": 0.0008886784042790284,
708
+ "loss": 0.473,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.7878315132605305,
713
+ "grad_norm": 2.208383798599243,
714
+ "learning_rate": 0.0008876755070202809,
715
+ "loss": 0.3899,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.7956318252730109,
720
+ "grad_norm": 2.3569576740264893,
721
+ "learning_rate": 0.0008865611767327836,
722
+ "loss": 0.3871,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8034321372854915,
727
+ "grad_norm": 2.7071454524993896,
728
+ "learning_rate": 0.0008854468464452864,
729
+ "loss": 0.3149,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8112324492979719,
734
+ "grad_norm": 2.8024532794952393,
735
+ "learning_rate": 0.0008843325161577892,
736
+ "loss": 0.3328,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.8190327613104524,
741
+ "grad_norm": 3.0969290733337402,
742
+ "learning_rate": 0.000883218185870292,
743
+ "loss": 0.3948,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.8268330733229329,
748
+ "grad_norm": 2.982484817504883,
749
+ "learning_rate": 0.0008821038555827947,
750
+ "loss": 0.4323,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.8346333853354134,
755
+ "grad_norm": 3.133814573287964,
756
+ "learning_rate": 0.0008809895252952975,
757
+ "loss": 0.4393,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.8424336973478939,
762
+ "grad_norm": 3.3123364448547363,
763
+ "learning_rate": 0.0008798751950078003,
764
+ "loss": 0.3244,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.8502340093603744,
769
+ "grad_norm": 2.308555841445923,
770
+ "learning_rate": 0.0008787608647203032,
771
+ "loss": 0.424,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.858034321372855,
776
+ "grad_norm": 3.654137134552002,
777
+ "learning_rate": 0.000877646534432806,
778
+ "loss": 0.3445,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.8658346333853354,
783
+ "grad_norm": 2.149843692779541,
784
+ "learning_rate": 0.0008765322041453087,
785
+ "loss": 0.3398,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.8736349453978159,
790
+ "grad_norm": 3.1334431171417236,
791
+ "learning_rate": 0.0008754178738578115,
792
+ "loss": 0.3333,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.8814352574102964,
797
+ "grad_norm": 2.2942090034484863,
798
+ "learning_rate": 0.0008743035435703143,
799
+ "loss": 0.4188,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.8892355694227769,
804
+ "grad_norm": 2.0195343494415283,
805
+ "learning_rate": 0.0008731892132828171,
806
+ "loss": 0.4047,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.8970358814352574,
811
+ "grad_norm": 2.3850839138031006,
812
+ "learning_rate": 0.0008720748829953198,
813
+ "loss": 0.3931,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.9048361934477379,
818
+ "grad_norm": 1.6200228929519653,
819
+ "learning_rate": 0.0008709605527078226,
820
+ "loss": 0.409,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.9126365054602185,
825
+ "grad_norm": 2.9001989364624023,
826
+ "learning_rate": 0.0008698462224203254,
827
+ "loss": 0.4289,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.9204368174726989,
832
+ "grad_norm": 1.52889883518219,
833
+ "learning_rate": 0.0008687318921328282,
834
+ "loss": 0.3575,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.9282371294851794,
839
+ "grad_norm": 2.359733819961548,
840
+ "learning_rate": 0.000867617561845331,
841
+ "loss": 0.3837,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.9360374414976599,
846
+ "grad_norm": 2.3807597160339355,
847
+ "learning_rate": 0.0008665032315578337,
848
+ "loss": 0.4206,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.9438377535101404,
853
+ "grad_norm": 1.8366179466247559,
854
+ "learning_rate": 0.0008653889012703365,
855
+ "loss": 0.3101,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.9516380655226209,
860
+ "grad_norm": 3.1048014163970947,
861
+ "learning_rate": 0.0008642745709828393,
862
+ "loss": 0.4104,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.9594383775351014,
867
+ "grad_norm": 1.5314342975616455,
868
+ "learning_rate": 0.0008631602406953422,
869
+ "loss": 0.3539,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.9672386895475819,
874
+ "grad_norm": 2.8501791954040527,
875
+ "learning_rate": 0.0008620459104078449,
876
+ "loss": 0.4104,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.9750390015600624,
881
+ "grad_norm": 5.708191394805908,
882
+ "learning_rate": 0.0008609315801203477,
883
+ "loss": 0.4038,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.982839313572543,
888
+ "grad_norm": 2.173867702484131,
889
+ "learning_rate": 0.0008598172498328505,
890
+ "loss": 0.338,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.9906396255850234,
895
+ "grad_norm": 2.7057418823242188,
896
+ "learning_rate": 0.0008587029195453533,
897
+ "loss": 0.3941,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.9984399375975039,
902
+ "grad_norm": 1.3492989540100098,
903
+ "learning_rate": 0.0008575885892578561,
904
+ "loss": 0.3696,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 1.0,
909
+ "eval_loss": 0.4044143855571747,
910
+ "eval_runtime": 635.8286,
911
+ "eval_samples_per_second": 0.865,
912
+ "eval_steps_per_second": 0.865,
913
+ "eval_wer": 26.665379416875844,
914
+ "step": 1282
915
+ },
916
+ {
917
+ "epoch": 1.0062402496099845,
918
+ "grad_norm": 2.5727291107177734,
919
+ "learning_rate": 0.0008564742589703588,
920
+ "loss": 0.3369,
921
+ "step": 1290
922
+ },
923
+ {
924
+ "epoch": 1.0140405616224648,
925
+ "grad_norm": 2.681490182876587,
926
+ "learning_rate": 0.0008553599286828616,
927
+ "loss": 0.2434,
928
+ "step": 1300
929
+ },
930
+ {
931
+ "epoch": 1.0218408736349454,
932
+ "grad_norm": 2.0296504497528076,
933
+ "learning_rate": 0.0008542455983953644,
934
+ "loss": 0.2122,
935
+ "step": 1310
936
+ },
937
+ {
938
+ "epoch": 1.029641185647426,
939
+ "grad_norm": 2.277512311935425,
940
+ "learning_rate": 0.0008531312681078672,
941
+ "loss": 0.3932,
942
+ "step": 1320
943
+ },
944
+ {
945
+ "epoch": 1.0374414976599065,
946
+ "grad_norm": 4.77215576171875,
947
+ "learning_rate": 0.0008520169378203699,
948
+ "loss": 0.2658,
949
+ "step": 1330
950
+ },
951
+ {
952
+ "epoch": 1.045241809672387,
953
+ "grad_norm": 1.4027091264724731,
954
+ "learning_rate": 0.0008509026075328727,
955
+ "loss": 0.3524,
956
+ "step": 1340
957
+ },
958
+ {
959
+ "epoch": 1.0530421216848673,
960
+ "grad_norm": 2.2849514484405518,
961
+ "learning_rate": 0.0008497882772453755,
962
+ "loss": 0.2705,
963
+ "step": 1350
964
+ },
965
+ {
966
+ "epoch": 1.0608424336973479,
967
+ "grad_norm": 1.2896777391433716,
968
+ "learning_rate": 0.0008486739469578784,
969
+ "loss": 0.264,
970
+ "step": 1360
971
+ },
972
+ {
973
+ "epoch": 1.0686427457098284,
974
+ "grad_norm": 2.4552128314971924,
975
+ "learning_rate": 0.0008475596166703812,
976
+ "loss": 0.2833,
977
+ "step": 1370
978
+ },
979
+ {
980
+ "epoch": 1.076443057722309,
981
+ "grad_norm": 2.044693946838379,
982
+ "learning_rate": 0.0008464452863828839,
983
+ "loss": 0.2116,
984
+ "step": 1380
985
+ },
986
+ {
987
+ "epoch": 1.0842433697347893,
988
+ "grad_norm": 1.3727463483810425,
989
+ "learning_rate": 0.0008453309560953867,
990
+ "loss": 0.2533,
991
+ "step": 1390
992
+ },
993
+ {
994
+ "epoch": 1.0920436817472698,
995
+ "grad_norm": 1.6917822360992432,
996
+ "learning_rate": 0.0008442166258078895,
997
+ "loss": 0.4259,
998
+ "step": 1400
999
+ },
1000
+ {
1001
+ "epoch": 1.0998439937597504,
1002
+ "grad_norm": 2.198549747467041,
1003
+ "learning_rate": 0.0008431022955203923,
1004
+ "loss": 0.3161,
1005
+ "step": 1410
1006
+ },
1007
+ {
1008
+ "epoch": 1.107644305772231,
1009
+ "grad_norm": 1.7467869520187378,
1010
+ "learning_rate": 0.000841987965232895,
1011
+ "loss": 0.2377,
1012
+ "step": 1420
1013
+ },
1014
+ {
1015
+ "epoch": 1.1154446177847115,
1016
+ "grad_norm": 2.5347695350646973,
1017
+ "learning_rate": 0.0008408736349453978,
1018
+ "loss": 0.3258,
1019
+ "step": 1430
1020
+ },
1021
+ {
1022
+ "epoch": 1.1232449297971918,
1023
+ "grad_norm": 1.9081774950027466,
1024
+ "learning_rate": 0.0008397593046579006,
1025
+ "loss": 0.2462,
1026
+ "step": 1440
1027
+ },
1028
+ {
1029
+ "epoch": 1.1310452418096724,
1030
+ "grad_norm": 1.5889848470687866,
1031
+ "learning_rate": 0.0008386449743704034,
1032
+ "loss": 0.2404,
1033
+ "step": 1450
1034
+ },
1035
+ {
1036
+ "epoch": 1.138845553822153,
1037
+ "grad_norm": 1.8944768905639648,
1038
+ "learning_rate": 0.0008375306440829062,
1039
+ "loss": 0.2707,
1040
+ "step": 1460
1041
+ },
1042
+ {
1043
+ "epoch": 1.1466458658346335,
1044
+ "grad_norm": 2.5448453426361084,
1045
+ "learning_rate": 0.0008364163137954089,
1046
+ "loss": 0.3342,
1047
+ "step": 1470
1048
+ },
1049
+ {
1050
+ "epoch": 1.154446177847114,
1051
+ "grad_norm": 2.0936005115509033,
1052
+ "learning_rate": 0.0008353019835079117,
1053
+ "loss": 0.385,
1054
+ "step": 1480
1055
+ },
1056
+ {
1057
+ "epoch": 1.1622464898595943,
1058
+ "grad_norm": 2.614129066467285,
1059
+ "learning_rate": 0.0008341876532204145,
1060
+ "loss": 0.2817,
1061
+ "step": 1490
1062
+ },
1063
+ {
1064
+ "epoch": 1.1700468018720749,
1065
+ "grad_norm": 1.6156001091003418,
1066
+ "learning_rate": 0.0008330733229329174,
1067
+ "loss": 0.3527,
1068
+ "step": 1500
1069
+ },
1070
+ {
1071
+ "epoch": 1.1778471138845554,
1072
+ "grad_norm": 1.4294220209121704,
1073
+ "learning_rate": 0.0008319589926454201,
1074
+ "loss": 0.2469,
1075
+ "step": 1510
1076
+ },
1077
+ {
1078
+ "epoch": 1.185647425897036,
1079
+ "grad_norm": 3.197176456451416,
1080
+ "learning_rate": 0.0008308446623579229,
1081
+ "loss": 0.2753,
1082
+ "step": 1520
1083
+ },
1084
+ {
1085
+ "epoch": 1.1934477379095163,
1086
+ "grad_norm": 2.1629223823547363,
1087
+ "learning_rate": 0.0008297303320704257,
1088
+ "loss": 0.3951,
1089
+ "step": 1530
1090
+ },
1091
+ {
1092
+ "epoch": 1.2012480499219969,
1093
+ "grad_norm": 2.9824419021606445,
1094
+ "learning_rate": 0.0008286160017829285,
1095
+ "loss": 0.3278,
1096
+ "step": 1540
1097
+ },
1098
+ {
1099
+ "epoch": 1.2090483619344774,
1100
+ "grad_norm": 2.866138219833374,
1101
+ "learning_rate": 0.0008275016714954313,
1102
+ "loss": 0.4267,
1103
+ "step": 1550
1104
+ },
1105
+ {
1106
+ "epoch": 1.216848673946958,
1107
+ "grad_norm": 2.36781644821167,
1108
+ "learning_rate": 0.000826387341207934,
1109
+ "loss": 0.3414,
1110
+ "step": 1560
1111
+ },
1112
+ {
1113
+ "epoch": 1.2246489859594383,
1114
+ "grad_norm": 1.8305447101593018,
1115
+ "learning_rate": 0.0008252730109204368,
1116
+ "loss": 0.2925,
1117
+ "step": 1570
1118
+ },
1119
+ {
1120
+ "epoch": 1.2324492979719188,
1121
+ "grad_norm": 1.9879776239395142,
1122
+ "learning_rate": 0.0008241586806329396,
1123
+ "loss": 0.357,
1124
+ "step": 1580
1125
+ },
1126
+ {
1127
+ "epoch": 1.2402496099843994,
1128
+ "grad_norm": 2.183350086212158,
1129
+ "learning_rate": 0.0008230443503454424,
1130
+ "loss": 0.3409,
1131
+ "step": 1590
1132
+ },
1133
+ {
1134
+ "epoch": 1.24804992199688,
1135
+ "grad_norm": 2.197072744369507,
1136
+ "learning_rate": 0.0008219300200579451,
1137
+ "loss": 0.33,
1138
+ "step": 1600
1139
+ },
1140
+ {
1141
+ "epoch": 1.2558502340093605,
1142
+ "grad_norm": 3.2065696716308594,
1143
+ "learning_rate": 0.0008208156897704479,
1144
+ "loss": 0.2853,
1145
+ "step": 1610
1146
+ },
1147
+ {
1148
+ "epoch": 1.2636505460218408,
1149
+ "grad_norm": 2.0581350326538086,
1150
+ "learning_rate": 0.0008197013594829507,
1151
+ "loss": 0.3647,
1152
+ "step": 1620
1153
+ },
1154
+ {
1155
+ "epoch": 1.2714508580343213,
1156
+ "grad_norm": 3.149153232574463,
1157
+ "learning_rate": 0.0008185870291954536,
1158
+ "loss": 0.3921,
1159
+ "step": 1630
1160
+ },
1161
+ {
1162
+ "epoch": 1.2792511700468019,
1163
+ "grad_norm": 2.5097105503082275,
1164
+ "learning_rate": 0.0008174726989079563,
1165
+ "loss": 0.3302,
1166
+ "step": 1640
1167
+ },
1168
+ {
1169
+ "epoch": 1.2870514820592824,
1170
+ "grad_norm": 2.7537474632263184,
1171
+ "learning_rate": 0.0008163583686204591,
1172
+ "loss": 0.3286,
1173
+ "step": 1650
1174
+ },
1175
+ {
1176
+ "epoch": 1.294851794071763,
1177
+ "grad_norm": 1.966965675354004,
1178
+ "learning_rate": 0.0008152440383329619,
1179
+ "loss": 0.2785,
1180
+ "step": 1660
1181
+ },
1182
+ {
1183
+ "epoch": 1.3026521060842433,
1184
+ "grad_norm": 1.9159988164901733,
1185
+ "learning_rate": 0.0008141297080454647,
1186
+ "loss": 0.3299,
1187
+ "step": 1670
1188
+ },
1189
+ {
1190
+ "epoch": 1.3104524180967239,
1191
+ "grad_norm": 2.2212252616882324,
1192
+ "learning_rate": 0.0008130153777579675,
1193
+ "loss": 0.2807,
1194
+ "step": 1680
1195
+ },
1196
+ {
1197
+ "epoch": 1.3182527301092044,
1198
+ "grad_norm": 4.194318771362305,
1199
+ "learning_rate": 0.0008119010474704702,
1200
+ "loss": 0.3161,
1201
+ "step": 1690
1202
+ },
1203
+ {
1204
+ "epoch": 1.3260530421216847,
1205
+ "grad_norm": 1.7189604043960571,
1206
+ "learning_rate": 0.000810786717182973,
1207
+ "loss": 0.3356,
1208
+ "step": 1700
1209
+ },
1210
+ {
1211
+ "epoch": 1.3338533541341655,
1212
+ "grad_norm": 1.5196418762207031,
1213
+ "learning_rate": 0.0008096723868954758,
1214
+ "loss": 0.2616,
1215
+ "step": 1710
1216
+ },
1217
+ {
1218
+ "epoch": 1.3416536661466458,
1219
+ "grad_norm": 1.497450351715088,
1220
+ "learning_rate": 0.0008085580566079786,
1221
+ "loss": 0.2946,
1222
+ "step": 1720
1223
+ },
1224
+ {
1225
+ "epoch": 1.3494539781591264,
1226
+ "grad_norm": 1.74885892868042,
1227
+ "learning_rate": 0.0008074437263204813,
1228
+ "loss": 0.2801,
1229
+ "step": 1730
1230
+ },
1231
+ {
1232
+ "epoch": 1.357254290171607,
1233
+ "grad_norm": 2.040701389312744,
1234
+ "learning_rate": 0.0008063293960329841,
1235
+ "loss": 0.3203,
1236
+ "step": 1740
1237
+ },
1238
+ {
1239
+ "epoch": 1.3650546021840873,
1240
+ "grad_norm": 3.760457754135132,
1241
+ "learning_rate": 0.0008052150657454869,
1242
+ "loss": 0.4569,
1243
+ "step": 1750
1244
+ },
1245
+ {
1246
+ "epoch": 1.3728549141965678,
1247
+ "grad_norm": 2.92971134185791,
1248
+ "learning_rate": 0.0008041007354579897,
1249
+ "loss": 0.3321,
1250
+ "step": 1760
1251
+ },
1252
+ {
1253
+ "epoch": 1.3806552262090483,
1254
+ "grad_norm": 1.9461047649383545,
1255
+ "learning_rate": 0.0008029864051704926,
1256
+ "loss": 0.2696,
1257
+ "step": 1770
1258
+ },
1259
+ {
1260
+ "epoch": 1.388455538221529,
1261
+ "grad_norm": 3.2626147270202637,
1262
+ "learning_rate": 0.0008018720748829953,
1263
+ "loss": 0.3322,
1264
+ "step": 1780
1265
+ },
1266
+ {
1267
+ "epoch": 1.3962558502340094,
1268
+ "grad_norm": 2.1270642280578613,
1269
+ "learning_rate": 0.0008007577445954981,
1270
+ "loss": 0.2965,
1271
+ "step": 1790
1272
+ },
1273
+ {
1274
+ "epoch": 1.4040561622464898,
1275
+ "grad_norm": 2.3174221515655518,
1276
+ "learning_rate": 0.0007996434143080009,
1277
+ "loss": 0.3425,
1278
+ "step": 1800
1279
+ },
1280
+ {
1281
+ "epoch": 1.4118564742589703,
1282
+ "grad_norm": 2.5749576091766357,
1283
+ "learning_rate": 0.0007985290840205037,
1284
+ "loss": 0.3622,
1285
+ "step": 1810
1286
+ },
1287
+ {
1288
+ "epoch": 1.4196567862714509,
1289
+ "grad_norm": 1.873813509941101,
1290
+ "learning_rate": 0.0007974147537330064,
1291
+ "loss": 0.2497,
1292
+ "step": 1820
1293
+ },
1294
+ {
1295
+ "epoch": 1.4274570982839314,
1296
+ "grad_norm": 3.633928060531616,
1297
+ "learning_rate": 0.0007963004234455092,
1298
+ "loss": 0.4058,
1299
+ "step": 1830
1300
+ },
1301
+ {
1302
+ "epoch": 1.435257410296412,
1303
+ "grad_norm": 2.356269598007202,
1304
+ "learning_rate": 0.000795186093158012,
1305
+ "loss": 0.2635,
1306
+ "step": 1840
1307
+ },
1308
+ {
1309
+ "epoch": 1.4430577223088923,
1310
+ "grad_norm": 1.9108752012252808,
1311
+ "learning_rate": 0.0007940717628705148,
1312
+ "loss": 0.336,
1313
+ "step": 1850
1314
+ },
1315
+ {
1316
+ "epoch": 1.4508580343213728,
1317
+ "grad_norm": 1.5505330562591553,
1318
+ "learning_rate": 0.0007929574325830176,
1319
+ "loss": 0.3493,
1320
+ "step": 1860
1321
+ },
1322
+ {
1323
+ "epoch": 1.4586583463338534,
1324
+ "grad_norm": 1.9970422983169556,
1325
+ "learning_rate": 0.0007918431022955203,
1326
+ "loss": 0.273,
1327
+ "step": 1870
1328
+ },
1329
+ {
1330
+ "epoch": 1.466458658346334,
1331
+ "grad_norm": 2.753758192062378,
1332
+ "learning_rate": 0.0007907287720080231,
1333
+ "loss": 0.2845,
1334
+ "step": 1880
1335
+ },
1336
+ {
1337
+ "epoch": 1.4742589703588145,
1338
+ "grad_norm": NaN,
1339
+ "learning_rate": 0.0007897258747492757,
1340
+ "loss": 0.2544,
1341
+ "step": 1890
1342
+ },
1343
+ {
1344
+ "epoch": 1.4820592823712948,
1345
+ "grad_norm": 3.0995099544525146,
1346
+ "learning_rate": 0.0007886115444617785,
1347
+ "loss": 0.2884,
1348
+ "step": 1900
1349
+ },
1350
+ {
1351
+ "epoch": 1.4898595943837754,
1352
+ "grad_norm": 5.728559970855713,
1353
+ "learning_rate": 0.0007874972141742812,
1354
+ "loss": 0.2681,
1355
+ "step": 1910
1356
+ },
1357
+ {
1358
+ "epoch": 1.497659906396256,
1359
+ "grad_norm": 1.492622971534729,
1360
+ "learning_rate": 0.000786382883886784,
1361
+ "loss": 0.2891,
1362
+ "step": 1920
1363
+ },
1364
+ {
1365
+ "epoch": 1.5054602184087362,
1366
+ "grad_norm": 1.7419252395629883,
1367
+ "learning_rate": 0.0007852685535992868,
1368
+ "loss": 0.4089,
1369
+ "step": 1930
1370
+ },
1371
+ {
1372
+ "epoch": 1.513260530421217,
1373
+ "grad_norm": 6.814690589904785,
1374
+ "learning_rate": 0.0007841542233117896,
1375
+ "loss": 0.3372,
1376
+ "step": 1940
1377
+ },
1378
+ {
1379
+ "epoch": 1.5210608424336973,
1380
+ "grad_norm": 2.380725860595703,
1381
+ "learning_rate": 0.0007830398930242924,
1382
+ "loss": 0.3189,
1383
+ "step": 1950
1384
+ },
1385
+ {
1386
+ "epoch": 1.5288611544461779,
1387
+ "grad_norm": 5.004116058349609,
1388
+ "learning_rate": 0.0007819255627367951,
1389
+ "loss": 0.3018,
1390
+ "step": 1960
1391
+ },
1392
+ {
1393
+ "epoch": 1.5366614664586584,
1394
+ "grad_norm": 2.604365825653076,
1395
+ "learning_rate": 0.0007808112324492979,
1396
+ "loss": 0.3054,
1397
+ "step": 1970
1398
+ },
1399
+ {
1400
+ "epoch": 1.5444617784711387,
1401
+ "grad_norm": 1.585584044456482,
1402
+ "learning_rate": 0.0007796969021618007,
1403
+ "loss": 0.3477,
1404
+ "step": 1980
1405
+ },
1406
+ {
1407
+ "epoch": 1.5522620904836193,
1408
+ "grad_norm": 1.8678693771362305,
1409
+ "learning_rate": 0.0007785825718743035,
1410
+ "loss": 0.3577,
1411
+ "step": 1990
1412
+ },
1413
+ {
1414
+ "epoch": 1.5600624024960998,
1415
+ "grad_norm": 1.654689073562622,
1416
+ "learning_rate": 0.0007774682415868062,
1417
+ "loss": 0.2625,
1418
+ "step": 2000
1419
+ },
1420
+ {
1421
+ "epoch": 1.5678627145085804,
1422
+ "grad_norm": 2.108919858932495,
1423
+ "learning_rate": 0.0007763539112993092,
1424
+ "loss": 0.2497,
1425
+ "step": 2010
1426
+ },
1427
+ {
1428
+ "epoch": 1.575663026521061,
1429
+ "grad_norm": 7.198604106903076,
1430
+ "learning_rate": 0.000775239581011812,
1431
+ "loss": 0.3382,
1432
+ "step": 2020
1433
+ },
1434
+ {
1435
+ "epoch": 1.5834633385335413,
1436
+ "grad_norm": 2.2285892963409424,
1437
+ "learning_rate": 0.0007741252507243148,
1438
+ "loss": 0.2598,
1439
+ "step": 2030
1440
+ },
1441
+ {
1442
+ "epoch": 1.5912636505460218,
1443
+ "grad_norm": 1.7743014097213745,
1444
+ "learning_rate": 0.0007730109204368176,
1445
+ "loss": 0.2757,
1446
+ "step": 2040
1447
+ },
1448
+ {
1449
+ "epoch": 1.5990639625585024,
1450
+ "grad_norm": 1.7763789892196655,
1451
+ "learning_rate": 0.0007718965901493203,
1452
+ "loss": 0.2703,
1453
+ "step": 2050
1454
+ },
1455
+ {
1456
+ "epoch": 1.6068642745709827,
1457
+ "grad_norm": 2.159956693649292,
1458
+ "learning_rate": 0.000770782259861823,
1459
+ "loss": 0.2824,
1460
+ "step": 2060
1461
+ },
1462
+ {
1463
+ "epoch": 1.6146645865834635,
1464
+ "grad_norm": 1.4845560789108276,
1465
+ "learning_rate": 0.0007696679295743259,
1466
+ "loss": 0.2528,
1467
+ "step": 2070
1468
+ },
1469
+ {
1470
+ "epoch": 1.6224648985959438,
1471
+ "grad_norm": 3.627887010574341,
1472
+ "learning_rate": 0.0007685535992868287,
1473
+ "loss": 0.3197,
1474
+ "step": 2080
1475
+ },
1476
+ {
1477
+ "epoch": 1.6302652106084243,
1478
+ "grad_norm": 2.2174973487854004,
1479
+ "learning_rate": 0.0007674392689993314,
1480
+ "loss": 0.2994,
1481
+ "step": 2090
1482
+ },
1483
+ {
1484
+ "epoch": 1.6380655226209049,
1485
+ "grad_norm": 2.5977325439453125,
1486
+ "learning_rate": 0.0007663249387118342,
1487
+ "loss": 0.2991,
1488
+ "step": 2100
1489
+ },
1490
+ {
1491
+ "epoch": 1.6458658346333852,
1492
+ "grad_norm": 1.9066824913024902,
1493
+ "learning_rate": 0.000765210608424337,
1494
+ "loss": 0.2166,
1495
+ "step": 2110
1496
+ },
1497
+ {
1498
+ "epoch": 1.653666146645866,
1499
+ "grad_norm": 1.7197297811508179,
1500
+ "learning_rate": 0.0007640962781368398,
1501
+ "loss": 0.2948,
1502
+ "step": 2120
1503
+ },
1504
+ {
1505
+ "epoch": 1.6614664586583463,
1506
+ "grad_norm": 2.054304361343384,
1507
+ "learning_rate": 0.0007629819478493426,
1508
+ "loss": 0.3073,
1509
+ "step": 2130
1510
+ },
1511
+ {
1512
+ "epoch": 1.6692667706708268,
1513
+ "grad_norm": 1.7934963703155518,
1514
+ "learning_rate": 0.0007618676175618453,
1515
+ "loss": 0.2667,
1516
+ "step": 2140
1517
+ },
1518
+ {
1519
+ "epoch": 1.6770670826833074,
1520
+ "grad_norm": 2.5259838104248047,
1521
+ "learning_rate": 0.0007607532872743482,
1522
+ "loss": 0.3322,
1523
+ "step": 2150
1524
+ },
1525
+ {
1526
+ "epoch": 1.6848673946957877,
1527
+ "grad_norm": 3.6354122161865234,
1528
+ "learning_rate": 0.000759638956986851,
1529
+ "loss": 0.3909,
1530
+ "step": 2160
1531
+ },
1532
+ {
1533
+ "epoch": 1.6926677067082685,
1534
+ "grad_norm": 1.6722809076309204,
1535
+ "learning_rate": 0.0007585246266993538,
1536
+ "loss": 0.2987,
1537
+ "step": 2170
1538
+ },
1539
+ {
1540
+ "epoch": 1.7004680187207488,
1541
+ "grad_norm": 4.3235015869140625,
1542
+ "learning_rate": 0.0007574102964118565,
1543
+ "loss": 0.3112,
1544
+ "step": 2180
1545
+ },
1546
+ {
1547
+ "epoch": 1.7082683307332294,
1548
+ "grad_norm": 2.236316442489624,
1549
+ "learning_rate": 0.0007562959661243593,
1550
+ "loss": 0.3174,
1551
+ "step": 2190
1552
+ },
1553
+ {
1554
+ "epoch": 1.71606864274571,
1555
+ "grad_norm": 21.32891273498535,
1556
+ "learning_rate": 0.0007551816358368621,
1557
+ "loss": 0.3696,
1558
+ "step": 2200
1559
+ },
1560
+ {
1561
+ "epoch": 1.7238689547581902,
1562
+ "grad_norm": 2.4251410961151123,
1563
+ "learning_rate": 0.0007540673055493649,
1564
+ "loss": 0.3171,
1565
+ "step": 2210
1566
+ },
1567
+ {
1568
+ "epoch": 1.7316692667706708,
1569
+ "grad_norm": 2.4152424335479736,
1570
+ "learning_rate": 0.0007529529752618677,
1571
+ "loss": 0.328,
1572
+ "step": 2220
1573
+ },
1574
+ {
1575
+ "epoch": 1.7394695787831513,
1576
+ "grad_norm": 2.0988574028015137,
1577
+ "learning_rate": 0.0007518386449743704,
1578
+ "loss": 0.3061,
1579
+ "step": 2230
1580
+ },
1581
+ {
1582
+ "epoch": 1.7472698907956317,
1583
+ "grad_norm": 4.469291687011719,
1584
+ "learning_rate": 0.0007507243146868732,
1585
+ "loss": 0.3315,
1586
+ "step": 2240
1587
+ },
1588
+ {
1589
+ "epoch": 1.7550702028081124,
1590
+ "grad_norm": 2.4917778968811035,
1591
+ "learning_rate": 0.000749609984399376,
1592
+ "loss": 0.4296,
1593
+ "step": 2250
1594
+ },
1595
+ {
1596
+ "epoch": 1.7628705148205928,
1597
+ "grad_norm": 3.073840379714966,
1598
+ "learning_rate": 0.0007484956541118788,
1599
+ "loss": 0.3685,
1600
+ "step": 2260
1601
+ },
1602
+ {
1603
+ "epoch": 1.7706708268330733,
1604
+ "grad_norm": 2.205733299255371,
1605
+ "learning_rate": 0.0007473813238243815,
1606
+ "loss": 0.2691,
1607
+ "step": 2270
1608
+ },
1609
+ {
1610
+ "epoch": 1.7784711388455539,
1611
+ "grad_norm": 2.3948941230773926,
1612
+ "learning_rate": 0.0007462669935368844,
1613
+ "loss": 0.3065,
1614
+ "step": 2280
1615
+ },
1616
+ {
1617
+ "epoch": 1.7862714508580342,
1618
+ "grad_norm": 2.6060824394226074,
1619
+ "learning_rate": 0.0007451526632493872,
1620
+ "loss": 0.3354,
1621
+ "step": 2290
1622
+ },
1623
+ {
1624
+ "epoch": 1.794071762870515,
1625
+ "grad_norm": 3.2586774826049805,
1626
+ "learning_rate": 0.00074403833296189,
1627
+ "loss": 0.261,
1628
+ "step": 2300
1629
+ },
1630
+ {
1631
+ "epoch": 1.8018720748829953,
1632
+ "grad_norm": 1.6417285203933716,
1633
+ "learning_rate": 0.0007429240026743928,
1634
+ "loss": 0.3828,
1635
+ "step": 2310
1636
+ },
1637
+ {
1638
+ "epoch": 1.8096723868954758,
1639
+ "grad_norm": 4.006927967071533,
1640
+ "learning_rate": 0.0007418096723868955,
1641
+ "loss": 0.4228,
1642
+ "step": 2320
1643
+ },
1644
+ {
1645
+ "epoch": 1.8174726989079564,
1646
+ "grad_norm": 2.5880374908447266,
1647
+ "learning_rate": 0.0007406953420993983,
1648
+ "loss": 0.2766,
1649
+ "step": 2330
1650
+ },
1651
+ {
1652
+ "epoch": 1.8252730109204367,
1653
+ "grad_norm": 1.602337121963501,
1654
+ "learning_rate": 0.0007395810118119011,
1655
+ "loss": 0.2794,
1656
+ "step": 2340
1657
+ },
1658
+ {
1659
+ "epoch": 1.8330733229329175,
1660
+ "grad_norm": 5.932153224945068,
1661
+ "learning_rate": 0.0007384666815244039,
1662
+ "loss": 0.3471,
1663
+ "step": 2350
1664
+ },
1665
+ {
1666
+ "epoch": 1.8408736349453978,
1667
+ "grad_norm": 4.076808452606201,
1668
+ "learning_rate": 0.0007373523512369066,
1669
+ "loss": 0.2649,
1670
+ "step": 2360
1671
+ },
1672
+ {
1673
+ "epoch": 1.8486739469578783,
1674
+ "grad_norm": 4.666397571563721,
1675
+ "learning_rate": 0.0007362380209494094,
1676
+ "loss": 0.2751,
1677
+ "step": 2370
1678
+ },
1679
+ {
1680
+ "epoch": 1.856474258970359,
1681
+ "grad_norm": 3.792745590209961,
1682
+ "learning_rate": 0.0007351236906619122,
1683
+ "loss": 0.2606,
1684
+ "step": 2380
1685
+ },
1686
+ {
1687
+ "epoch": 1.8642745709828392,
1688
+ "grad_norm": 2.5275423526763916,
1689
+ "learning_rate": 0.000734009360374415,
1690
+ "loss": 0.3469,
1691
+ "step": 2390
1692
+ },
1693
+ {
1694
+ "epoch": 1.8720748829953198,
1695
+ "grad_norm": 1.59649658203125,
1696
+ "learning_rate": 0.0007328950300869178,
1697
+ "loss": 0.2724,
1698
+ "step": 2400
1699
+ },
1700
+ {
1701
+ "epoch": 1.8798751950078003,
1702
+ "grad_norm": 3.7428267002105713,
1703
+ "learning_rate": 0.0007317806997994206,
1704
+ "loss": 0.4426,
1705
+ "step": 2410
1706
+ },
1707
+ {
1708
+ "epoch": 1.8876755070202809,
1709
+ "grad_norm": 3.7439956665039062,
1710
+ "learning_rate": 0.0007306663695119234,
1711
+ "loss": 0.2901,
1712
+ "step": 2420
1713
+ },
1714
+ {
1715
+ "epoch": 1.8954758190327614,
1716
+ "grad_norm": 2.3777198791503906,
1717
+ "learning_rate": 0.0007295520392244262,
1718
+ "loss": 0.2837,
1719
+ "step": 2430
1720
+ },
1721
+ {
1722
+ "epoch": 1.9032761310452417,
1723
+ "grad_norm": 2.7654988765716553,
1724
+ "learning_rate": 0.000728437708936929,
1725
+ "loss": 0.277,
1726
+ "step": 2440
1727
+ },
1728
+ {
1729
+ "epoch": 1.9110764430577223,
1730
+ "grad_norm": 1.8758680820465088,
1731
+ "learning_rate": 0.0007273233786494317,
1732
+ "loss": 0.2706,
1733
+ "step": 2450
1734
+ },
1735
+ {
1736
+ "epoch": 1.9188767550702028,
1737
+ "grad_norm": 2.8725340366363525,
1738
+ "learning_rate": 0.0007262090483619345,
1739
+ "loss": 0.2566,
1740
+ "step": 2460
1741
+ },
1742
+ {
1743
+ "epoch": 1.9266770670826832,
1744
+ "grad_norm": 2.4021458625793457,
1745
+ "learning_rate": 0.0007250947180744373,
1746
+ "loss": 0.2645,
1747
+ "step": 2470
1748
+ },
1749
+ {
1750
+ "epoch": 1.934477379095164,
1751
+ "grad_norm": 2.8407838344573975,
1752
+ "learning_rate": 0.0007239803877869401,
1753
+ "loss": 0.3152,
1754
+ "step": 2480
1755
+ },
1756
+ {
1757
+ "epoch": 1.9422776911076443,
1758
+ "grad_norm": 3.606403112411499,
1759
+ "learning_rate": 0.0007228660574994429,
1760
+ "loss": 0.373,
1761
+ "step": 2490
1762
+ },
1763
+ {
1764
+ "epoch": 1.9500780031201248,
1765
+ "grad_norm": 2.362473487854004,
1766
+ "learning_rate": 0.0007217517272119456,
1767
+ "loss": 0.4332,
1768
+ "step": 2500
1769
+ },
1770
+ {
1771
+ "epoch": 1.9578783151326054,
1772
+ "grad_norm": 1.9711815118789673,
1773
+ "learning_rate": 0.0007206373969244484,
1774
+ "loss": 0.2606,
1775
+ "step": 2510
1776
+ },
1777
+ {
1778
+ "epoch": 1.9656786271450857,
1779
+ "grad_norm": 2.683908224105835,
1780
+ "learning_rate": 0.0007195230666369512,
1781
+ "loss": 0.3582,
1782
+ "step": 2520
1783
+ },
1784
+ {
1785
+ "epoch": 1.9734789391575664,
1786
+ "grad_norm": 2.5902493000030518,
1787
+ "learning_rate": 0.000718408736349454,
1788
+ "loss": 0.2694,
1789
+ "step": 2530
1790
+ },
1791
+ {
1792
+ "epoch": 1.9812792511700468,
1793
+ "grad_norm": 3.92708420753479,
1794
+ "learning_rate": 0.0007172944060619567,
1795
+ "loss": 0.3083,
1796
+ "step": 2540
1797
+ },
1798
+ {
1799
+ "epoch": 1.9890795631825273,
1800
+ "grad_norm": 2.6788370609283447,
1801
+ "learning_rate": 0.0007161800757744596,
1802
+ "loss": 0.2587,
1803
+ "step": 2550
1804
+ },
1805
+ {
1806
+ "epoch": 1.9968798751950079,
1807
+ "grad_norm": 2.413313627243042,
1808
+ "learning_rate": 0.0007150657454869624,
1809
+ "loss": 0.2732,
1810
+ "step": 2560
1811
+ },
1812
+ {
1813
+ "epoch": 2.0,
1814
+ "eval_loss": 0.3617618680000305,
1815
+ "eval_runtime": 36952.264,
1816
+ "eval_samples_per_second": 0.015,
1817
+ "eval_steps_per_second": 0.015,
1818
+ "eval_wer": 22.793975670978952,
1819
+ "step": 2564
1820
+ }
1821
+ ],
1822
+ "logging_steps": 10,
1823
+ "max_steps": 8974,
1824
+ "num_input_tokens_seen": 0,
1825
+ "num_train_epochs": 7,
1826
+ "save_steps": 500,
1827
+ "stateful_callbacks": {
1828
+ "TrainerControl": {
1829
+ "args": {
1830
+ "should_epoch_stop": false,
1831
+ "should_evaluate": false,
1832
+ "should_log": false,
1833
+ "should_save": true,
1834
+ "should_training_stop": false
1835
+ },
1836
+ "attributes": {}
1837
+ }
1838
+ },
1839
+ "total_flos": 2.25899794169856e+18,
1840
+ "train_batch_size": 3,
1841
+ "trial_name": null,
1842
+ "trial_params": null
1843
+ }
checkpoint-2564/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87bdde76802c6f6975c7a62016872baaa0d2d042f00a6968d4a9fadade014aa7
3
+ size 5432
checkpoint-3846/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openai/whisper-small
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.1
checkpoint-3846/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "WhisperForConditionalGeneration",
5
+ "parent_library": "transformers.models.whisper.modeling_whisper"
6
+ },
7
+ "base_model_name_or_path": "openai/whisper-small",
8
+ "bias": "none",
9
+ "corda_config": null,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 64,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "r": 32,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "q_proj",
31
+ "v_proj"
32
+ ],
33
+ "task_type": null,
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-3846/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e76bd5cfed787c516ed6fce8d2d8c0ee2787834afc04871ba3e410ef9d5b0900
3
+ size 14176064
checkpoint-3846/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32f14dd0adfb3e40faa6cc63c3eaa286860e61936a189971626c3692302a21f1
3
+ size 28432570
checkpoint-3846/preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
checkpoint-3846/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6162a8a7b581c951d3b42caa27aa201d009d04a6cefc177ec4e39f366827eb25
3
+ size 14244
checkpoint-3846/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46036d1e75960fd9e119e16473789f6ee322f2785c0f0da785f220b1a9e20f62
3
+ size 988
checkpoint-3846/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24acd7ee7f5c127e7cc14245ddd02a2a7e3440506b3b7a0e7e9f976f92870102
3
+ size 1064
checkpoint-3846/trainer_state.json ADDED
@@ -0,0 +1,2748 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 3846,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0078003120124804995,
13
+ "grad_norm": 2.144841432571411,
14
+ "learning_rate": 0.0009989971027412525,
15
+ "loss": 1.1174,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.015600624024960999,
20
+ "grad_norm": 1.0625462532043457,
21
+ "learning_rate": 0.0009978827724537553,
22
+ "loss": 0.5035,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.0234009360374415,
27
+ "grad_norm": 1.619573950767517,
28
+ "learning_rate": 0.0009967684421662581,
29
+ "loss": 0.3841,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.031201248049921998,
34
+ "grad_norm": 3.2681403160095215,
35
+ "learning_rate": 0.000995654111878761,
36
+ "loss": 0.4974,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.0390015600624025,
41
+ "grad_norm": 1.5944786071777344,
42
+ "learning_rate": 0.0009945397815912637,
43
+ "loss": 0.4797,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.046801872074883,
48
+ "grad_norm": 1.8234444856643677,
49
+ "learning_rate": 0.0009934254513037665,
50
+ "loss": 0.637,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.054602184087363496,
55
+ "grad_norm": 3.790844440460205,
56
+ "learning_rate": 0.0009923111210162691,
57
+ "loss": 0.4479,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.062402496099843996,
62
+ "grad_norm": 2.9351046085357666,
63
+ "learning_rate": 0.000991196790728772,
64
+ "loss": 0.4332,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07020280811232449,
69
+ "grad_norm": 2.2770025730133057,
70
+ "learning_rate": 0.0009900824604412747,
71
+ "loss": 0.4399,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.078003120124805,
76
+ "grad_norm": 1.86591637134552,
77
+ "learning_rate": 0.0009889681301537775,
78
+ "loss": 0.407,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.08580343213728549,
83
+ "grad_norm": 1.6851640939712524,
84
+ "learning_rate": 0.0009878537998662805,
85
+ "loss": 0.3862,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.093603744149766,
90
+ "grad_norm": 2.5469818115234375,
91
+ "learning_rate": 0.0009867394695787831,
92
+ "loss": 0.4166,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.10140405616224649,
97
+ "grad_norm": 1.8210259675979614,
98
+ "learning_rate": 0.000985625139291286,
99
+ "loss": 0.3785,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.10920436817472699,
104
+ "grad_norm": 2.031057119369507,
105
+ "learning_rate": 0.0009845108090037887,
106
+ "loss": 0.4177,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.11700468018720749,
111
+ "grad_norm": 1.6646612882614136,
112
+ "learning_rate": 0.0009833964787162915,
113
+ "loss": 0.402,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.12480499219968799,
118
+ "grad_norm": 1.8680285215377808,
119
+ "learning_rate": 0.0009822821484287943,
120
+ "loss": 0.3282,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.13260530421216848,
125
+ "grad_norm": 1.8039604425430298,
126
+ "learning_rate": 0.0009811678181412971,
127
+ "loss": 0.3536,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.14040561622464898,
132
+ "grad_norm": 3.3018901348114014,
133
+ "learning_rate": 0.0009800534878538,
134
+ "loss": 0.4595,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.1482059282371295,
139
+ "grad_norm": 3.684013843536377,
140
+ "learning_rate": 0.0009789391575663027,
141
+ "loss": 0.4288,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.15600624024961,
146
+ "grad_norm": 1.4512592554092407,
147
+ "learning_rate": 0.0009778248272788055,
148
+ "loss": 0.5086,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.16380655226209048,
153
+ "grad_norm": 2.3981761932373047,
154
+ "learning_rate": 0.0009767104969913081,
155
+ "loss": 0.4084,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.17160686427457097,
160
+ "grad_norm": 3.7943010330200195,
161
+ "learning_rate": 0.000975596166703811,
162
+ "loss": 0.4524,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.1794071762870515,
167
+ "grad_norm": 2.657606840133667,
168
+ "learning_rate": 0.0009744818364163138,
169
+ "loss": 0.3592,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.187207488299532,
174
+ "grad_norm": 2.7629363536834717,
175
+ "learning_rate": 0.0009733675061288166,
176
+ "loss": 0.4263,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.19500780031201248,
181
+ "grad_norm": 1.3749983310699463,
182
+ "learning_rate": 0.0009722531758413193,
183
+ "loss": 0.48,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.20280811232449297,
188
+ "grad_norm": 2.648716449737549,
189
+ "learning_rate": 0.0009711388455538221,
190
+ "loss": 0.416,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.21060842433697347,
195
+ "grad_norm": 1.5672308206558228,
196
+ "learning_rate": 0.0009700245152663249,
197
+ "loss": 0.4223,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.21840873634945399,
202
+ "grad_norm": 2.618163585662842,
203
+ "learning_rate": 0.0009689101849788277,
204
+ "loss": 0.4172,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.22620904836193448,
209
+ "grad_norm": 3.6365268230438232,
210
+ "learning_rate": 0.0009677958546913305,
211
+ "loss": 0.5501,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.23400936037441497,
216
+ "grad_norm": 2.740039825439453,
217
+ "learning_rate": 0.0009666815244038332,
218
+ "loss": 0.3553,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.24180967238689546,
223
+ "grad_norm": 3.406210422515869,
224
+ "learning_rate": 0.000965567194116336,
225
+ "loss": 0.3518,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.24960998439937598,
230
+ "grad_norm": 1.4707075357437134,
231
+ "learning_rate": 0.000964452863828839,
232
+ "loss": 0.3452,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.2574102964118565,
237
+ "grad_norm": 1.608324408531189,
238
+ "learning_rate": 0.0009633385335413417,
239
+ "loss": 0.4908,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.26521060842433697,
244
+ "grad_norm": 4.090480327606201,
245
+ "learning_rate": 0.0009622242032538444,
246
+ "loss": 0.4597,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.27301092043681746,
251
+ "grad_norm": 2.2214395999908447,
252
+ "learning_rate": 0.0009611098729663472,
253
+ "loss": 0.4552,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.28081123244929795,
258
+ "grad_norm": 1.9134166240692139,
259
+ "learning_rate": 0.00095999554267885,
260
+ "loss": 0.3571,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.28861154446177845,
265
+ "grad_norm": 1.8127851486206055,
266
+ "learning_rate": 0.0009588812123913528,
267
+ "loss": 0.3808,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.296411856474259,
272
+ "grad_norm": 2.2262885570526123,
273
+ "learning_rate": 0.0009577668821038556,
274
+ "loss": 0.4099,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3042121684867395,
279
+ "grad_norm": 2.8041303157806396,
280
+ "learning_rate": 0.0009566525518163583,
281
+ "loss": 0.3988,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.31201248049922,
286
+ "grad_norm": 6.797432899475098,
287
+ "learning_rate": 0.0009555382215288611,
288
+ "loss": 0.4728,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.31981279251170047,
293
+ "grad_norm": 3.1861369609832764,
294
+ "learning_rate": 0.000954423891241364,
295
+ "loss": 0.3502,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.32761310452418096,
300
+ "grad_norm": 2.9223642349243164,
301
+ "learning_rate": 0.0009533095609538667,
302
+ "loss": 0.4215,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.33541341653666146,
307
+ "grad_norm": 6.848895072937012,
308
+ "learning_rate": 0.0009521952306663694,
309
+ "loss": 0.415,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.34321372854914195,
314
+ "grad_norm": 9.054282188415527,
315
+ "learning_rate": 0.0009510809003788722,
316
+ "loss": 0.4667,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.35101404056162244,
321
+ "grad_norm": 2.3005900382995605,
322
+ "learning_rate": 0.0009499665700913752,
323
+ "loss": 0.6565,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.358814352574103,
328
+ "grad_norm": 2.9467573165893555,
329
+ "learning_rate": 0.000948852239803878,
330
+ "loss": 0.3837,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.3666146645865835,
335
+ "grad_norm": 1.5977652072906494,
336
+ "learning_rate": 0.0009477379095163808,
337
+ "loss": 0.407,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.374414976599064,
342
+ "grad_norm": 2.8274600505828857,
343
+ "learning_rate": 0.0009466235792288835,
344
+ "loss": 0.4501,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.38221528861154447,
349
+ "grad_norm": 1.8566502332687378,
350
+ "learning_rate": 0.0009455092489413863,
351
+ "loss": 0.3146,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.39001560062402496,
356
+ "grad_norm": 2.5871951580047607,
357
+ "learning_rate": 0.0009443949186538891,
358
+ "loss": 0.3335,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.39781591263650545,
363
+ "grad_norm": 2.0552711486816406,
364
+ "learning_rate": 0.0009432805883663919,
365
+ "loss": 0.3698,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.40561622464898595,
370
+ "grad_norm": 1.5244548320770264,
371
+ "learning_rate": 0.0009421662580788946,
372
+ "loss": 0.581,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.41341653666146644,
377
+ "grad_norm": 1.5146633386611938,
378
+ "learning_rate": 0.0009410519277913974,
379
+ "loss": 0.3634,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.42121684867394693,
384
+ "grad_norm": 2.394819736480713,
385
+ "learning_rate": 0.0009399375975039002,
386
+ "loss": 0.338,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.4290171606864275,
391
+ "grad_norm": 2.3500325679779053,
392
+ "learning_rate": 0.000938823267216403,
393
+ "loss": 0.4025,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.43681747269890797,
398
+ "grad_norm": 2.4186370372772217,
399
+ "learning_rate": 0.0009377089369289058,
400
+ "loss": 0.4095,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.44461778471138846,
405
+ "grad_norm": 1.9770065546035767,
406
+ "learning_rate": 0.0009365946066414085,
407
+ "loss": 0.4275,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.45241809672386896,
412
+ "grad_norm": 1.7679632902145386,
413
+ "learning_rate": 0.0009354802763539114,
414
+ "loss": 0.3949,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.46021840873634945,
419
+ "grad_norm": 2.0794620513916016,
420
+ "learning_rate": 0.0009343659460664142,
421
+ "loss": 0.4208,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.46801872074882994,
426
+ "grad_norm": 2.677424192428589,
427
+ "learning_rate": 0.000933251615778917,
428
+ "loss": 0.4089,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.47581903276131043,
433
+ "grad_norm": 1.526112675666809,
434
+ "learning_rate": 0.0009321372854914197,
435
+ "loss": 0.4196,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.4836193447737909,
440
+ "grad_norm": 1.8656370639801025,
441
+ "learning_rate": 0.0009310229552039225,
442
+ "loss": 0.3732,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.4914196567862715,
447
+ "grad_norm": 3.3338847160339355,
448
+ "learning_rate": 0.0009299086249164253,
449
+ "loss": 0.4231,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.49921996879875197,
454
+ "grad_norm": 2.1057350635528564,
455
+ "learning_rate": 0.0009287942946289281,
456
+ "loss": 0.3921,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.5070202808112324,
461
+ "grad_norm": 1.544977068901062,
462
+ "learning_rate": 0.0009276799643414309,
463
+ "loss": 0.3748,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.514820592823713,
468
+ "grad_norm": 3.4070258140563965,
469
+ "learning_rate": 0.0009265656340539336,
470
+ "loss": 0.4027,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5226209048361935,
475
+ "grad_norm": 5.5486931800842285,
476
+ "learning_rate": 0.0009254513037664364,
477
+ "loss": 0.4326,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.5304212168486739,
482
+ "grad_norm": 3.6824769973754883,
483
+ "learning_rate": 0.0009243369734789392,
484
+ "loss": 0.4809,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5382215288611545,
489
+ "grad_norm": 6.3154778480529785,
490
+ "learning_rate": 0.000923222643191442,
491
+ "loss": 0.3588,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.5460218408736349,
496
+ "grad_norm": 3.133465528488159,
497
+ "learning_rate": 0.0009221083129039447,
498
+ "loss": 0.4712,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.5538221528861155,
503
+ "grad_norm": 4.222598552703857,
504
+ "learning_rate": 0.0009209939826164475,
505
+ "loss": 0.4135,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.5616224648985959,
510
+ "grad_norm": 4.6125078201293945,
511
+ "learning_rate": 0.0009198796523289504,
512
+ "loss": 0.393,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.5694227769110765,
517
+ "grad_norm": 6.543318748474121,
518
+ "learning_rate": 0.0009187653220414532,
519
+ "loss": 0.6138,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.5772230889235569,
524
+ "grad_norm": 2.596463680267334,
525
+ "learning_rate": 0.000917650991753956,
526
+ "loss": 0.3694,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.5850234009360374,
531
+ "grad_norm": 2.428490161895752,
532
+ "learning_rate": 0.0009165366614664587,
533
+ "loss": 0.4535,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.592823712948518,
538
+ "grad_norm": 1.8790688514709473,
539
+ "learning_rate": 0.0009154223311789615,
540
+ "loss": 0.3986,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6006240249609984,
545
+ "grad_norm": 3.141587734222412,
546
+ "learning_rate": 0.0009143080008914643,
547
+ "loss": 0.3881,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.608424336973479,
552
+ "grad_norm": 2.125810146331787,
553
+ "learning_rate": 0.0009131936706039671,
554
+ "loss": 0.4225,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.6162246489859594,
559
+ "grad_norm": 2.532404661178589,
560
+ "learning_rate": 0.0009120793403164698,
561
+ "loss": 0.3423,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.62402496099844,
566
+ "grad_norm": 3.6324350833892822,
567
+ "learning_rate": 0.0009109650100289726,
568
+ "loss": 0.4205,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6318252730109204,
573
+ "grad_norm": 1.4804415702819824,
574
+ "learning_rate": 0.0009098506797414754,
575
+ "loss": 0.4042,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.6396255850234009,
580
+ "grad_norm": 1.5140562057495117,
581
+ "learning_rate": 0.0009087363494539782,
582
+ "loss": 0.3056,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.6474258970358814,
587
+ "grad_norm": 2.470576047897339,
588
+ "learning_rate": 0.000907622019166481,
589
+ "loss": 0.391,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.6552262090483619,
594
+ "grad_norm": 3.4496209621429443,
595
+ "learning_rate": 0.0009065076888789837,
596
+ "loss": 0.4163,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.6630265210608425,
601
+ "grad_norm": 1.8823250532150269,
602
+ "learning_rate": 0.0009053933585914866,
603
+ "loss": 0.3877,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.6708268330733229,
608
+ "grad_norm": 2.492297410964966,
609
+ "learning_rate": 0.0009042790283039894,
610
+ "loss": 0.3542,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.6786271450858035,
615
+ "grad_norm": 3.977569341659546,
616
+ "learning_rate": 0.0009031646980164922,
617
+ "loss": 0.4168,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.6864274570982839,
622
+ "grad_norm": 3.938462495803833,
623
+ "learning_rate": 0.0009020503677289949,
624
+ "loss": 0.4894,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.6942277691107644,
629
+ "grad_norm": 1.3457701206207275,
630
+ "learning_rate": 0.0009009360374414977,
631
+ "loss": 0.4903,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7020280811232449,
636
+ "grad_norm": 6.3473124504089355,
637
+ "learning_rate": 0.0008998217071540005,
638
+ "loss": 0.4766,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7098283931357254,
643
+ "grad_norm": 3.145792245864868,
644
+ "learning_rate": 0.0008987073768665033,
645
+ "loss": 0.4119,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.717628705148206,
650
+ "grad_norm": 1.809446930885315,
651
+ "learning_rate": 0.0008975930465790061,
652
+ "loss": 0.3991,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.7254290171606864,
657
+ "grad_norm": 1.7960044145584106,
658
+ "learning_rate": 0.0008964787162915088,
659
+ "loss": 0.3095,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.733229329173167,
664
+ "grad_norm": 2.9710285663604736,
665
+ "learning_rate": 0.0008953643860040116,
666
+ "loss": 0.5104,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.7410296411856474,
671
+ "grad_norm": 2.460524797439575,
672
+ "learning_rate": 0.0008942500557165144,
673
+ "loss": 0.4332,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.748829953198128,
678
+ "grad_norm": 1.6166704893112183,
679
+ "learning_rate": 0.0008931357254290172,
680
+ "loss": 0.3856,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.7566302652106084,
685
+ "grad_norm": 1.747750163078308,
686
+ "learning_rate": 0.0008920213951415199,
687
+ "loss": 0.3973,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.7644305772230889,
692
+ "grad_norm": 1.4469414949417114,
693
+ "learning_rate": 0.0008909070648540227,
694
+ "loss": 0.3344,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.7722308892355694,
699
+ "grad_norm": 4.661273956298828,
700
+ "learning_rate": 0.0008897927345665256,
701
+ "loss": 0.6003,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.7800312012480499,
706
+ "grad_norm": 3.6588950157165527,
707
+ "learning_rate": 0.0008886784042790284,
708
+ "loss": 0.473,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.7878315132605305,
713
+ "grad_norm": 2.208383798599243,
714
+ "learning_rate": 0.0008876755070202809,
715
+ "loss": 0.3899,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.7956318252730109,
720
+ "grad_norm": 2.3569576740264893,
721
+ "learning_rate": 0.0008865611767327836,
722
+ "loss": 0.3871,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8034321372854915,
727
+ "grad_norm": 2.7071454524993896,
728
+ "learning_rate": 0.0008854468464452864,
729
+ "loss": 0.3149,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8112324492979719,
734
+ "grad_norm": 2.8024532794952393,
735
+ "learning_rate": 0.0008843325161577892,
736
+ "loss": 0.3328,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.8190327613104524,
741
+ "grad_norm": 3.0969290733337402,
742
+ "learning_rate": 0.000883218185870292,
743
+ "loss": 0.3948,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.8268330733229329,
748
+ "grad_norm": 2.982484817504883,
749
+ "learning_rate": 0.0008821038555827947,
750
+ "loss": 0.4323,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.8346333853354134,
755
+ "grad_norm": 3.133814573287964,
756
+ "learning_rate": 0.0008809895252952975,
757
+ "loss": 0.4393,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.8424336973478939,
762
+ "grad_norm": 3.3123364448547363,
763
+ "learning_rate": 0.0008798751950078003,
764
+ "loss": 0.3244,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.8502340093603744,
769
+ "grad_norm": 2.308555841445923,
770
+ "learning_rate": 0.0008787608647203032,
771
+ "loss": 0.424,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.858034321372855,
776
+ "grad_norm": 3.654137134552002,
777
+ "learning_rate": 0.000877646534432806,
778
+ "loss": 0.3445,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.8658346333853354,
783
+ "grad_norm": 2.149843692779541,
784
+ "learning_rate": 0.0008765322041453087,
785
+ "loss": 0.3398,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.8736349453978159,
790
+ "grad_norm": 3.1334431171417236,
791
+ "learning_rate": 0.0008754178738578115,
792
+ "loss": 0.3333,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.8814352574102964,
797
+ "grad_norm": 2.2942090034484863,
798
+ "learning_rate": 0.0008743035435703143,
799
+ "loss": 0.4188,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.8892355694227769,
804
+ "grad_norm": 2.0195343494415283,
805
+ "learning_rate": 0.0008731892132828171,
806
+ "loss": 0.4047,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.8970358814352574,
811
+ "grad_norm": 2.3850839138031006,
812
+ "learning_rate": 0.0008720748829953198,
813
+ "loss": 0.3931,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.9048361934477379,
818
+ "grad_norm": 1.6200228929519653,
819
+ "learning_rate": 0.0008709605527078226,
820
+ "loss": 0.409,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.9126365054602185,
825
+ "grad_norm": 2.9001989364624023,
826
+ "learning_rate": 0.0008698462224203254,
827
+ "loss": 0.4289,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.9204368174726989,
832
+ "grad_norm": 1.52889883518219,
833
+ "learning_rate": 0.0008687318921328282,
834
+ "loss": 0.3575,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.9282371294851794,
839
+ "grad_norm": 2.359733819961548,
840
+ "learning_rate": 0.000867617561845331,
841
+ "loss": 0.3837,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.9360374414976599,
846
+ "grad_norm": 2.3807597160339355,
847
+ "learning_rate": 0.0008665032315578337,
848
+ "loss": 0.4206,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.9438377535101404,
853
+ "grad_norm": 1.8366179466247559,
854
+ "learning_rate": 0.0008653889012703365,
855
+ "loss": 0.3101,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.9516380655226209,
860
+ "grad_norm": 3.1048014163970947,
861
+ "learning_rate": 0.0008642745709828393,
862
+ "loss": 0.4104,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.9594383775351014,
867
+ "grad_norm": 1.5314342975616455,
868
+ "learning_rate": 0.0008631602406953422,
869
+ "loss": 0.3539,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.9672386895475819,
874
+ "grad_norm": 2.8501791954040527,
875
+ "learning_rate": 0.0008620459104078449,
876
+ "loss": 0.4104,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.9750390015600624,
881
+ "grad_norm": 5.708191394805908,
882
+ "learning_rate": 0.0008609315801203477,
883
+ "loss": 0.4038,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.982839313572543,
888
+ "grad_norm": 2.173867702484131,
889
+ "learning_rate": 0.0008598172498328505,
890
+ "loss": 0.338,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.9906396255850234,
895
+ "grad_norm": 2.7057418823242188,
896
+ "learning_rate": 0.0008587029195453533,
897
+ "loss": 0.3941,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.9984399375975039,
902
+ "grad_norm": 1.3492989540100098,
903
+ "learning_rate": 0.0008575885892578561,
904
+ "loss": 0.3696,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 1.0,
909
+ "eval_loss": 0.4044143855571747,
910
+ "eval_runtime": 635.8286,
911
+ "eval_samples_per_second": 0.865,
912
+ "eval_steps_per_second": 0.865,
913
+ "eval_wer": 26.665379416875844,
914
+ "step": 1282
915
+ },
916
+ {
917
+ "epoch": 1.0062402496099845,
918
+ "grad_norm": 2.5727291107177734,
919
+ "learning_rate": 0.0008564742589703588,
920
+ "loss": 0.3369,
921
+ "step": 1290
922
+ },
923
+ {
924
+ "epoch": 1.0140405616224648,
925
+ "grad_norm": 2.681490182876587,
926
+ "learning_rate": 0.0008553599286828616,
927
+ "loss": 0.2434,
928
+ "step": 1300
929
+ },
930
+ {
931
+ "epoch": 1.0218408736349454,
932
+ "grad_norm": 2.0296504497528076,
933
+ "learning_rate": 0.0008542455983953644,
934
+ "loss": 0.2122,
935
+ "step": 1310
936
+ },
937
+ {
938
+ "epoch": 1.029641185647426,
939
+ "grad_norm": 2.277512311935425,
940
+ "learning_rate": 0.0008531312681078672,
941
+ "loss": 0.3932,
942
+ "step": 1320
943
+ },
944
+ {
945
+ "epoch": 1.0374414976599065,
946
+ "grad_norm": 4.77215576171875,
947
+ "learning_rate": 0.0008520169378203699,
948
+ "loss": 0.2658,
949
+ "step": 1330
950
+ },
951
+ {
952
+ "epoch": 1.045241809672387,
953
+ "grad_norm": 1.4027091264724731,
954
+ "learning_rate": 0.0008509026075328727,
955
+ "loss": 0.3524,
956
+ "step": 1340
957
+ },
958
+ {
959
+ "epoch": 1.0530421216848673,
960
+ "grad_norm": 2.2849514484405518,
961
+ "learning_rate": 0.0008497882772453755,
962
+ "loss": 0.2705,
963
+ "step": 1350
964
+ },
965
+ {
966
+ "epoch": 1.0608424336973479,
967
+ "grad_norm": 1.2896777391433716,
968
+ "learning_rate": 0.0008486739469578784,
969
+ "loss": 0.264,
970
+ "step": 1360
971
+ },
972
+ {
973
+ "epoch": 1.0686427457098284,
974
+ "grad_norm": 2.4552128314971924,
975
+ "learning_rate": 0.0008475596166703812,
976
+ "loss": 0.2833,
977
+ "step": 1370
978
+ },
979
+ {
980
+ "epoch": 1.076443057722309,
981
+ "grad_norm": 2.044693946838379,
982
+ "learning_rate": 0.0008464452863828839,
983
+ "loss": 0.2116,
984
+ "step": 1380
985
+ },
986
+ {
987
+ "epoch": 1.0842433697347893,
988
+ "grad_norm": 1.3727463483810425,
989
+ "learning_rate": 0.0008453309560953867,
990
+ "loss": 0.2533,
991
+ "step": 1390
992
+ },
993
+ {
994
+ "epoch": 1.0920436817472698,
995
+ "grad_norm": 1.6917822360992432,
996
+ "learning_rate": 0.0008442166258078895,
997
+ "loss": 0.4259,
998
+ "step": 1400
999
+ },
1000
+ {
1001
+ "epoch": 1.0998439937597504,
1002
+ "grad_norm": 2.198549747467041,
1003
+ "learning_rate": 0.0008431022955203923,
1004
+ "loss": 0.3161,
1005
+ "step": 1410
1006
+ },
1007
+ {
1008
+ "epoch": 1.107644305772231,
1009
+ "grad_norm": 1.7467869520187378,
1010
+ "learning_rate": 0.000841987965232895,
1011
+ "loss": 0.2377,
1012
+ "step": 1420
1013
+ },
1014
+ {
1015
+ "epoch": 1.1154446177847115,
1016
+ "grad_norm": 2.5347695350646973,
1017
+ "learning_rate": 0.0008408736349453978,
1018
+ "loss": 0.3258,
1019
+ "step": 1430
1020
+ },
1021
+ {
1022
+ "epoch": 1.1232449297971918,
1023
+ "grad_norm": 1.9081774950027466,
1024
+ "learning_rate": 0.0008397593046579006,
1025
+ "loss": 0.2462,
1026
+ "step": 1440
1027
+ },
1028
+ {
1029
+ "epoch": 1.1310452418096724,
1030
+ "grad_norm": 1.5889848470687866,
1031
+ "learning_rate": 0.0008386449743704034,
1032
+ "loss": 0.2404,
1033
+ "step": 1450
1034
+ },
1035
+ {
1036
+ "epoch": 1.138845553822153,
1037
+ "grad_norm": 1.8944768905639648,
1038
+ "learning_rate": 0.0008375306440829062,
1039
+ "loss": 0.2707,
1040
+ "step": 1460
1041
+ },
1042
+ {
1043
+ "epoch": 1.1466458658346335,
1044
+ "grad_norm": 2.5448453426361084,
1045
+ "learning_rate": 0.0008364163137954089,
1046
+ "loss": 0.3342,
1047
+ "step": 1470
1048
+ },
1049
+ {
1050
+ "epoch": 1.154446177847114,
1051
+ "grad_norm": 2.0936005115509033,
1052
+ "learning_rate": 0.0008353019835079117,
1053
+ "loss": 0.385,
1054
+ "step": 1480
1055
+ },
1056
+ {
1057
+ "epoch": 1.1622464898595943,
1058
+ "grad_norm": 2.614129066467285,
1059
+ "learning_rate": 0.0008341876532204145,
1060
+ "loss": 0.2817,
1061
+ "step": 1490
1062
+ },
1063
+ {
1064
+ "epoch": 1.1700468018720749,
1065
+ "grad_norm": 1.6156001091003418,
1066
+ "learning_rate": 0.0008330733229329174,
1067
+ "loss": 0.3527,
1068
+ "step": 1500
1069
+ },
1070
+ {
1071
+ "epoch": 1.1778471138845554,
1072
+ "grad_norm": 1.4294220209121704,
1073
+ "learning_rate": 0.0008319589926454201,
1074
+ "loss": 0.2469,
1075
+ "step": 1510
1076
+ },
1077
+ {
1078
+ "epoch": 1.185647425897036,
1079
+ "grad_norm": 3.197176456451416,
1080
+ "learning_rate": 0.0008308446623579229,
1081
+ "loss": 0.2753,
1082
+ "step": 1520
1083
+ },
1084
+ {
1085
+ "epoch": 1.1934477379095163,
1086
+ "grad_norm": 2.1629223823547363,
1087
+ "learning_rate": 0.0008297303320704257,
1088
+ "loss": 0.3951,
1089
+ "step": 1530
1090
+ },
1091
+ {
1092
+ "epoch": 1.2012480499219969,
1093
+ "grad_norm": 2.9824419021606445,
1094
+ "learning_rate": 0.0008286160017829285,
1095
+ "loss": 0.3278,
1096
+ "step": 1540
1097
+ },
1098
+ {
1099
+ "epoch": 1.2090483619344774,
1100
+ "grad_norm": 2.866138219833374,
1101
+ "learning_rate": 0.0008275016714954313,
1102
+ "loss": 0.4267,
1103
+ "step": 1550
1104
+ },
1105
+ {
1106
+ "epoch": 1.216848673946958,
1107
+ "grad_norm": 2.36781644821167,
1108
+ "learning_rate": 0.000826387341207934,
1109
+ "loss": 0.3414,
1110
+ "step": 1560
1111
+ },
1112
+ {
1113
+ "epoch": 1.2246489859594383,
1114
+ "grad_norm": 1.8305447101593018,
1115
+ "learning_rate": 0.0008252730109204368,
1116
+ "loss": 0.2925,
1117
+ "step": 1570
1118
+ },
1119
+ {
1120
+ "epoch": 1.2324492979719188,
1121
+ "grad_norm": 1.9879776239395142,
1122
+ "learning_rate": 0.0008241586806329396,
1123
+ "loss": 0.357,
1124
+ "step": 1580
1125
+ },
1126
+ {
1127
+ "epoch": 1.2402496099843994,
1128
+ "grad_norm": 2.183350086212158,
1129
+ "learning_rate": 0.0008230443503454424,
1130
+ "loss": 0.3409,
1131
+ "step": 1590
1132
+ },
1133
+ {
1134
+ "epoch": 1.24804992199688,
1135
+ "grad_norm": 2.197072744369507,
1136
+ "learning_rate": 0.0008219300200579451,
1137
+ "loss": 0.33,
1138
+ "step": 1600
1139
+ },
1140
+ {
1141
+ "epoch": 1.2558502340093605,
1142
+ "grad_norm": 3.2065696716308594,
1143
+ "learning_rate": 0.0008208156897704479,
1144
+ "loss": 0.2853,
1145
+ "step": 1610
1146
+ },
1147
+ {
1148
+ "epoch": 1.2636505460218408,
1149
+ "grad_norm": 2.0581350326538086,
1150
+ "learning_rate": 0.0008197013594829507,
1151
+ "loss": 0.3647,
1152
+ "step": 1620
1153
+ },
1154
+ {
1155
+ "epoch": 1.2714508580343213,
1156
+ "grad_norm": 3.149153232574463,
1157
+ "learning_rate": 0.0008185870291954536,
1158
+ "loss": 0.3921,
1159
+ "step": 1630
1160
+ },
1161
+ {
1162
+ "epoch": 1.2792511700468019,
1163
+ "grad_norm": 2.5097105503082275,
1164
+ "learning_rate": 0.0008174726989079563,
1165
+ "loss": 0.3302,
1166
+ "step": 1640
1167
+ },
1168
+ {
1169
+ "epoch": 1.2870514820592824,
1170
+ "grad_norm": 2.7537474632263184,
1171
+ "learning_rate": 0.0008163583686204591,
1172
+ "loss": 0.3286,
1173
+ "step": 1650
1174
+ },
1175
+ {
1176
+ "epoch": 1.294851794071763,
1177
+ "grad_norm": 1.966965675354004,
1178
+ "learning_rate": 0.0008152440383329619,
1179
+ "loss": 0.2785,
1180
+ "step": 1660
1181
+ },
1182
+ {
1183
+ "epoch": 1.3026521060842433,
1184
+ "grad_norm": 1.9159988164901733,
1185
+ "learning_rate": 0.0008141297080454647,
1186
+ "loss": 0.3299,
1187
+ "step": 1670
1188
+ },
1189
+ {
1190
+ "epoch": 1.3104524180967239,
1191
+ "grad_norm": 2.2212252616882324,
1192
+ "learning_rate": 0.0008130153777579675,
1193
+ "loss": 0.2807,
1194
+ "step": 1680
1195
+ },
1196
+ {
1197
+ "epoch": 1.3182527301092044,
1198
+ "grad_norm": 4.194318771362305,
1199
+ "learning_rate": 0.0008119010474704702,
1200
+ "loss": 0.3161,
1201
+ "step": 1690
1202
+ },
1203
+ {
1204
+ "epoch": 1.3260530421216847,
1205
+ "grad_norm": 1.7189604043960571,
1206
+ "learning_rate": 0.000810786717182973,
1207
+ "loss": 0.3356,
1208
+ "step": 1700
1209
+ },
1210
+ {
1211
+ "epoch": 1.3338533541341655,
1212
+ "grad_norm": 1.5196418762207031,
1213
+ "learning_rate": 0.0008096723868954758,
1214
+ "loss": 0.2616,
1215
+ "step": 1710
1216
+ },
1217
+ {
1218
+ "epoch": 1.3416536661466458,
1219
+ "grad_norm": 1.497450351715088,
1220
+ "learning_rate": 0.0008085580566079786,
1221
+ "loss": 0.2946,
1222
+ "step": 1720
1223
+ },
1224
+ {
1225
+ "epoch": 1.3494539781591264,
1226
+ "grad_norm": 1.74885892868042,
1227
+ "learning_rate": 0.0008074437263204813,
1228
+ "loss": 0.2801,
1229
+ "step": 1730
1230
+ },
1231
+ {
1232
+ "epoch": 1.357254290171607,
1233
+ "grad_norm": 2.040701389312744,
1234
+ "learning_rate": 0.0008063293960329841,
1235
+ "loss": 0.3203,
1236
+ "step": 1740
1237
+ },
1238
+ {
1239
+ "epoch": 1.3650546021840873,
1240
+ "grad_norm": 3.760457754135132,
1241
+ "learning_rate": 0.0008052150657454869,
1242
+ "loss": 0.4569,
1243
+ "step": 1750
1244
+ },
1245
+ {
1246
+ "epoch": 1.3728549141965678,
1247
+ "grad_norm": 2.92971134185791,
1248
+ "learning_rate": 0.0008041007354579897,
1249
+ "loss": 0.3321,
1250
+ "step": 1760
1251
+ },
1252
+ {
1253
+ "epoch": 1.3806552262090483,
1254
+ "grad_norm": 1.9461047649383545,
1255
+ "learning_rate": 0.0008029864051704926,
1256
+ "loss": 0.2696,
1257
+ "step": 1770
1258
+ },
1259
+ {
1260
+ "epoch": 1.388455538221529,
1261
+ "grad_norm": 3.2626147270202637,
1262
+ "learning_rate": 0.0008018720748829953,
1263
+ "loss": 0.3322,
1264
+ "step": 1780
1265
+ },
1266
+ {
1267
+ "epoch": 1.3962558502340094,
1268
+ "grad_norm": 2.1270642280578613,
1269
+ "learning_rate": 0.0008007577445954981,
1270
+ "loss": 0.2965,
1271
+ "step": 1790
1272
+ },
1273
+ {
1274
+ "epoch": 1.4040561622464898,
1275
+ "grad_norm": 2.3174221515655518,
1276
+ "learning_rate": 0.0007996434143080009,
1277
+ "loss": 0.3425,
1278
+ "step": 1800
1279
+ },
1280
+ {
1281
+ "epoch": 1.4118564742589703,
1282
+ "grad_norm": 2.5749576091766357,
1283
+ "learning_rate": 0.0007985290840205037,
1284
+ "loss": 0.3622,
1285
+ "step": 1810
1286
+ },
1287
+ {
1288
+ "epoch": 1.4196567862714509,
1289
+ "grad_norm": 1.873813509941101,
1290
+ "learning_rate": 0.0007974147537330064,
1291
+ "loss": 0.2497,
1292
+ "step": 1820
1293
+ },
1294
+ {
1295
+ "epoch": 1.4274570982839314,
1296
+ "grad_norm": 3.633928060531616,
1297
+ "learning_rate": 0.0007963004234455092,
1298
+ "loss": 0.4058,
1299
+ "step": 1830
1300
+ },
1301
+ {
1302
+ "epoch": 1.435257410296412,
1303
+ "grad_norm": 2.356269598007202,
1304
+ "learning_rate": 0.000795186093158012,
1305
+ "loss": 0.2635,
1306
+ "step": 1840
1307
+ },
1308
+ {
1309
+ "epoch": 1.4430577223088923,
1310
+ "grad_norm": 1.9108752012252808,
1311
+ "learning_rate": 0.0007940717628705148,
1312
+ "loss": 0.336,
1313
+ "step": 1850
1314
+ },
1315
+ {
1316
+ "epoch": 1.4508580343213728,
1317
+ "grad_norm": 1.5505330562591553,
1318
+ "learning_rate": 0.0007929574325830176,
1319
+ "loss": 0.3493,
1320
+ "step": 1860
1321
+ },
1322
+ {
1323
+ "epoch": 1.4586583463338534,
1324
+ "grad_norm": 1.9970422983169556,
1325
+ "learning_rate": 0.0007918431022955203,
1326
+ "loss": 0.273,
1327
+ "step": 1870
1328
+ },
1329
+ {
1330
+ "epoch": 1.466458658346334,
1331
+ "grad_norm": 2.753758192062378,
1332
+ "learning_rate": 0.0007907287720080231,
1333
+ "loss": 0.2845,
1334
+ "step": 1880
1335
+ },
1336
+ {
1337
+ "epoch": 1.4742589703588145,
1338
+ "grad_norm": NaN,
1339
+ "learning_rate": 0.0007897258747492757,
1340
+ "loss": 0.2544,
1341
+ "step": 1890
1342
+ },
1343
+ {
1344
+ "epoch": 1.4820592823712948,
1345
+ "grad_norm": 3.0995099544525146,
1346
+ "learning_rate": 0.0007886115444617785,
1347
+ "loss": 0.2884,
1348
+ "step": 1900
1349
+ },
1350
+ {
1351
+ "epoch": 1.4898595943837754,
1352
+ "grad_norm": 5.728559970855713,
1353
+ "learning_rate": 0.0007874972141742812,
1354
+ "loss": 0.2681,
1355
+ "step": 1910
1356
+ },
1357
+ {
1358
+ "epoch": 1.497659906396256,
1359
+ "grad_norm": 1.492622971534729,
1360
+ "learning_rate": 0.000786382883886784,
1361
+ "loss": 0.2891,
1362
+ "step": 1920
1363
+ },
1364
+ {
1365
+ "epoch": 1.5054602184087362,
1366
+ "grad_norm": 1.7419252395629883,
1367
+ "learning_rate": 0.0007852685535992868,
1368
+ "loss": 0.4089,
1369
+ "step": 1930
1370
+ },
1371
+ {
1372
+ "epoch": 1.513260530421217,
1373
+ "grad_norm": 6.814690589904785,
1374
+ "learning_rate": 0.0007841542233117896,
1375
+ "loss": 0.3372,
1376
+ "step": 1940
1377
+ },
1378
+ {
1379
+ "epoch": 1.5210608424336973,
1380
+ "grad_norm": 2.380725860595703,
1381
+ "learning_rate": 0.0007830398930242924,
1382
+ "loss": 0.3189,
1383
+ "step": 1950
1384
+ },
1385
+ {
1386
+ "epoch": 1.5288611544461779,
1387
+ "grad_norm": 5.004116058349609,
1388
+ "learning_rate": 0.0007819255627367951,
1389
+ "loss": 0.3018,
1390
+ "step": 1960
1391
+ },
1392
+ {
1393
+ "epoch": 1.5366614664586584,
1394
+ "grad_norm": 2.604365825653076,
1395
+ "learning_rate": 0.0007808112324492979,
1396
+ "loss": 0.3054,
1397
+ "step": 1970
1398
+ },
1399
+ {
1400
+ "epoch": 1.5444617784711387,
1401
+ "grad_norm": 1.585584044456482,
1402
+ "learning_rate": 0.0007796969021618007,
1403
+ "loss": 0.3477,
1404
+ "step": 1980
1405
+ },
1406
+ {
1407
+ "epoch": 1.5522620904836193,
1408
+ "grad_norm": 1.8678693771362305,
1409
+ "learning_rate": 0.0007785825718743035,
1410
+ "loss": 0.3577,
1411
+ "step": 1990
1412
+ },
1413
+ {
1414
+ "epoch": 1.5600624024960998,
1415
+ "grad_norm": 1.654689073562622,
1416
+ "learning_rate": 0.0007774682415868062,
1417
+ "loss": 0.2625,
1418
+ "step": 2000
1419
+ },
1420
+ {
1421
+ "epoch": 1.5678627145085804,
1422
+ "grad_norm": 2.108919858932495,
1423
+ "learning_rate": 0.0007763539112993092,
1424
+ "loss": 0.2497,
1425
+ "step": 2010
1426
+ },
1427
+ {
1428
+ "epoch": 1.575663026521061,
1429
+ "grad_norm": 7.198604106903076,
1430
+ "learning_rate": 0.000775239581011812,
1431
+ "loss": 0.3382,
1432
+ "step": 2020
1433
+ },
1434
+ {
1435
+ "epoch": 1.5834633385335413,
1436
+ "grad_norm": 2.2285892963409424,
1437
+ "learning_rate": 0.0007741252507243148,
1438
+ "loss": 0.2598,
1439
+ "step": 2030
1440
+ },
1441
+ {
1442
+ "epoch": 1.5912636505460218,
1443
+ "grad_norm": 1.7743014097213745,
1444
+ "learning_rate": 0.0007730109204368176,
1445
+ "loss": 0.2757,
1446
+ "step": 2040
1447
+ },
1448
+ {
1449
+ "epoch": 1.5990639625585024,
1450
+ "grad_norm": 1.7763789892196655,
1451
+ "learning_rate": 0.0007718965901493203,
1452
+ "loss": 0.2703,
1453
+ "step": 2050
1454
+ },
1455
+ {
1456
+ "epoch": 1.6068642745709827,
1457
+ "grad_norm": 2.159956693649292,
1458
+ "learning_rate": 0.000770782259861823,
1459
+ "loss": 0.2824,
1460
+ "step": 2060
1461
+ },
1462
+ {
1463
+ "epoch": 1.6146645865834635,
1464
+ "grad_norm": 1.4845560789108276,
1465
+ "learning_rate": 0.0007696679295743259,
1466
+ "loss": 0.2528,
1467
+ "step": 2070
1468
+ },
1469
+ {
1470
+ "epoch": 1.6224648985959438,
1471
+ "grad_norm": 3.627887010574341,
1472
+ "learning_rate": 0.0007685535992868287,
1473
+ "loss": 0.3197,
1474
+ "step": 2080
1475
+ },
1476
+ {
1477
+ "epoch": 1.6302652106084243,
1478
+ "grad_norm": 2.2174973487854004,
1479
+ "learning_rate": 0.0007674392689993314,
1480
+ "loss": 0.2994,
1481
+ "step": 2090
1482
+ },
1483
+ {
1484
+ "epoch": 1.6380655226209049,
1485
+ "grad_norm": 2.5977325439453125,
1486
+ "learning_rate": 0.0007663249387118342,
1487
+ "loss": 0.2991,
1488
+ "step": 2100
1489
+ },
1490
+ {
1491
+ "epoch": 1.6458658346333852,
1492
+ "grad_norm": 1.9066824913024902,
1493
+ "learning_rate": 0.000765210608424337,
1494
+ "loss": 0.2166,
1495
+ "step": 2110
1496
+ },
1497
+ {
1498
+ "epoch": 1.653666146645866,
1499
+ "grad_norm": 1.7197297811508179,
1500
+ "learning_rate": 0.0007640962781368398,
1501
+ "loss": 0.2948,
1502
+ "step": 2120
1503
+ },
1504
+ {
1505
+ "epoch": 1.6614664586583463,
1506
+ "grad_norm": 2.054304361343384,
1507
+ "learning_rate": 0.0007629819478493426,
1508
+ "loss": 0.3073,
1509
+ "step": 2130
1510
+ },
1511
+ {
1512
+ "epoch": 1.6692667706708268,
1513
+ "grad_norm": 1.7934963703155518,
1514
+ "learning_rate": 0.0007618676175618453,
1515
+ "loss": 0.2667,
1516
+ "step": 2140
1517
+ },
1518
+ {
1519
+ "epoch": 1.6770670826833074,
1520
+ "grad_norm": 2.5259838104248047,
1521
+ "learning_rate": 0.0007607532872743482,
1522
+ "loss": 0.3322,
1523
+ "step": 2150
1524
+ },
1525
+ {
1526
+ "epoch": 1.6848673946957877,
1527
+ "grad_norm": 3.6354122161865234,
1528
+ "learning_rate": 0.000759638956986851,
1529
+ "loss": 0.3909,
1530
+ "step": 2160
1531
+ },
1532
+ {
1533
+ "epoch": 1.6926677067082685,
1534
+ "grad_norm": 1.6722809076309204,
1535
+ "learning_rate": 0.0007585246266993538,
1536
+ "loss": 0.2987,
1537
+ "step": 2170
1538
+ },
1539
+ {
1540
+ "epoch": 1.7004680187207488,
1541
+ "grad_norm": 4.3235015869140625,
1542
+ "learning_rate": 0.0007574102964118565,
1543
+ "loss": 0.3112,
1544
+ "step": 2180
1545
+ },
1546
+ {
1547
+ "epoch": 1.7082683307332294,
1548
+ "grad_norm": 2.236316442489624,
1549
+ "learning_rate": 0.0007562959661243593,
1550
+ "loss": 0.3174,
1551
+ "step": 2190
1552
+ },
1553
+ {
1554
+ "epoch": 1.71606864274571,
1555
+ "grad_norm": 21.32891273498535,
1556
+ "learning_rate": 0.0007551816358368621,
1557
+ "loss": 0.3696,
1558
+ "step": 2200
1559
+ },
1560
+ {
1561
+ "epoch": 1.7238689547581902,
1562
+ "grad_norm": 2.4251410961151123,
1563
+ "learning_rate": 0.0007540673055493649,
1564
+ "loss": 0.3171,
1565
+ "step": 2210
1566
+ },
1567
+ {
1568
+ "epoch": 1.7316692667706708,
1569
+ "grad_norm": 2.4152424335479736,
1570
+ "learning_rate": 0.0007529529752618677,
1571
+ "loss": 0.328,
1572
+ "step": 2220
1573
+ },
1574
+ {
1575
+ "epoch": 1.7394695787831513,
1576
+ "grad_norm": 2.0988574028015137,
1577
+ "learning_rate": 0.0007518386449743704,
1578
+ "loss": 0.3061,
1579
+ "step": 2230
1580
+ },
1581
+ {
1582
+ "epoch": 1.7472698907956317,
1583
+ "grad_norm": 4.469291687011719,
1584
+ "learning_rate": 0.0007507243146868732,
1585
+ "loss": 0.3315,
1586
+ "step": 2240
1587
+ },
1588
+ {
1589
+ "epoch": 1.7550702028081124,
1590
+ "grad_norm": 2.4917778968811035,
1591
+ "learning_rate": 0.000749609984399376,
1592
+ "loss": 0.4296,
1593
+ "step": 2250
1594
+ },
1595
+ {
1596
+ "epoch": 1.7628705148205928,
1597
+ "grad_norm": 3.073840379714966,
1598
+ "learning_rate": 0.0007484956541118788,
1599
+ "loss": 0.3685,
1600
+ "step": 2260
1601
+ },
1602
+ {
1603
+ "epoch": 1.7706708268330733,
1604
+ "grad_norm": 2.205733299255371,
1605
+ "learning_rate": 0.0007473813238243815,
1606
+ "loss": 0.2691,
1607
+ "step": 2270
1608
+ },
1609
+ {
1610
+ "epoch": 1.7784711388455539,
1611
+ "grad_norm": 2.3948941230773926,
1612
+ "learning_rate": 0.0007462669935368844,
1613
+ "loss": 0.3065,
1614
+ "step": 2280
1615
+ },
1616
+ {
1617
+ "epoch": 1.7862714508580342,
1618
+ "grad_norm": 2.6060824394226074,
1619
+ "learning_rate": 0.0007451526632493872,
1620
+ "loss": 0.3354,
1621
+ "step": 2290
1622
+ },
1623
+ {
1624
+ "epoch": 1.794071762870515,
1625
+ "grad_norm": 3.2586774826049805,
1626
+ "learning_rate": 0.00074403833296189,
1627
+ "loss": 0.261,
1628
+ "step": 2300
1629
+ },
1630
+ {
1631
+ "epoch": 1.8018720748829953,
1632
+ "grad_norm": 1.6417285203933716,
1633
+ "learning_rate": 0.0007429240026743928,
1634
+ "loss": 0.3828,
1635
+ "step": 2310
1636
+ },
1637
+ {
1638
+ "epoch": 1.8096723868954758,
1639
+ "grad_norm": 4.006927967071533,
1640
+ "learning_rate": 0.0007418096723868955,
1641
+ "loss": 0.4228,
1642
+ "step": 2320
1643
+ },
1644
+ {
1645
+ "epoch": 1.8174726989079564,
1646
+ "grad_norm": 2.5880374908447266,
1647
+ "learning_rate": 0.0007406953420993983,
1648
+ "loss": 0.2766,
1649
+ "step": 2330
1650
+ },
1651
+ {
1652
+ "epoch": 1.8252730109204367,
1653
+ "grad_norm": 1.602337121963501,
1654
+ "learning_rate": 0.0007395810118119011,
1655
+ "loss": 0.2794,
1656
+ "step": 2340
1657
+ },
1658
+ {
1659
+ "epoch": 1.8330733229329175,
1660
+ "grad_norm": 5.932153224945068,
1661
+ "learning_rate": 0.0007384666815244039,
1662
+ "loss": 0.3471,
1663
+ "step": 2350
1664
+ },
1665
+ {
1666
+ "epoch": 1.8408736349453978,
1667
+ "grad_norm": 4.076808452606201,
1668
+ "learning_rate": 0.0007373523512369066,
1669
+ "loss": 0.2649,
1670
+ "step": 2360
1671
+ },
1672
+ {
1673
+ "epoch": 1.8486739469578783,
1674
+ "grad_norm": 4.666397571563721,
1675
+ "learning_rate": 0.0007362380209494094,
1676
+ "loss": 0.2751,
1677
+ "step": 2370
1678
+ },
1679
+ {
1680
+ "epoch": 1.856474258970359,
1681
+ "grad_norm": 3.792745590209961,
1682
+ "learning_rate": 0.0007351236906619122,
1683
+ "loss": 0.2606,
1684
+ "step": 2380
1685
+ },
1686
+ {
1687
+ "epoch": 1.8642745709828392,
1688
+ "grad_norm": 2.5275423526763916,
1689
+ "learning_rate": 0.000734009360374415,
1690
+ "loss": 0.3469,
1691
+ "step": 2390
1692
+ },
1693
+ {
1694
+ "epoch": 1.8720748829953198,
1695
+ "grad_norm": 1.59649658203125,
1696
+ "learning_rate": 0.0007328950300869178,
1697
+ "loss": 0.2724,
1698
+ "step": 2400
1699
+ },
1700
+ {
1701
+ "epoch": 1.8798751950078003,
1702
+ "grad_norm": 3.7428267002105713,
1703
+ "learning_rate": 0.0007317806997994206,
1704
+ "loss": 0.4426,
1705
+ "step": 2410
1706
+ },
1707
+ {
1708
+ "epoch": 1.8876755070202809,
1709
+ "grad_norm": 3.7439956665039062,
1710
+ "learning_rate": 0.0007306663695119234,
1711
+ "loss": 0.2901,
1712
+ "step": 2420
1713
+ },
1714
+ {
1715
+ "epoch": 1.8954758190327614,
1716
+ "grad_norm": 2.3777198791503906,
1717
+ "learning_rate": 0.0007295520392244262,
1718
+ "loss": 0.2837,
1719
+ "step": 2430
1720
+ },
1721
+ {
1722
+ "epoch": 1.9032761310452417,
1723
+ "grad_norm": 2.7654988765716553,
1724
+ "learning_rate": 0.000728437708936929,
1725
+ "loss": 0.277,
1726
+ "step": 2440
1727
+ },
1728
+ {
1729
+ "epoch": 1.9110764430577223,
1730
+ "grad_norm": 1.8758680820465088,
1731
+ "learning_rate": 0.0007273233786494317,
1732
+ "loss": 0.2706,
1733
+ "step": 2450
1734
+ },
1735
+ {
1736
+ "epoch": 1.9188767550702028,
1737
+ "grad_norm": 2.8725340366363525,
1738
+ "learning_rate": 0.0007262090483619345,
1739
+ "loss": 0.2566,
1740
+ "step": 2460
1741
+ },
1742
+ {
1743
+ "epoch": 1.9266770670826832,
1744
+ "grad_norm": 2.4021458625793457,
1745
+ "learning_rate": 0.0007250947180744373,
1746
+ "loss": 0.2645,
1747
+ "step": 2470
1748
+ },
1749
+ {
1750
+ "epoch": 1.934477379095164,
1751
+ "grad_norm": 2.8407838344573975,
1752
+ "learning_rate": 0.0007239803877869401,
1753
+ "loss": 0.3152,
1754
+ "step": 2480
1755
+ },
1756
+ {
1757
+ "epoch": 1.9422776911076443,
1758
+ "grad_norm": 3.606403112411499,
1759
+ "learning_rate": 0.0007228660574994429,
1760
+ "loss": 0.373,
1761
+ "step": 2490
1762
+ },
1763
+ {
1764
+ "epoch": 1.9500780031201248,
1765
+ "grad_norm": 2.362473487854004,
1766
+ "learning_rate": 0.0007217517272119456,
1767
+ "loss": 0.4332,
1768
+ "step": 2500
1769
+ },
1770
+ {
1771
+ "epoch": 1.9578783151326054,
1772
+ "grad_norm": 1.9711815118789673,
1773
+ "learning_rate": 0.0007206373969244484,
1774
+ "loss": 0.2606,
1775
+ "step": 2510
1776
+ },
1777
+ {
1778
+ "epoch": 1.9656786271450857,
1779
+ "grad_norm": 2.683908224105835,
1780
+ "learning_rate": 0.0007195230666369512,
1781
+ "loss": 0.3582,
1782
+ "step": 2520
1783
+ },
1784
+ {
1785
+ "epoch": 1.9734789391575664,
1786
+ "grad_norm": 2.5902493000030518,
1787
+ "learning_rate": 0.000718408736349454,
1788
+ "loss": 0.2694,
1789
+ "step": 2530
1790
+ },
1791
+ {
1792
+ "epoch": 1.9812792511700468,
1793
+ "grad_norm": 3.92708420753479,
1794
+ "learning_rate": 0.0007172944060619567,
1795
+ "loss": 0.3083,
1796
+ "step": 2540
1797
+ },
1798
+ {
1799
+ "epoch": 1.9890795631825273,
1800
+ "grad_norm": 2.6788370609283447,
1801
+ "learning_rate": 0.0007161800757744596,
1802
+ "loss": 0.2587,
1803
+ "step": 2550
1804
+ },
1805
+ {
1806
+ "epoch": 1.9968798751950079,
1807
+ "grad_norm": 2.413313627243042,
1808
+ "learning_rate": 0.0007150657454869624,
1809
+ "loss": 0.2732,
1810
+ "step": 2560
1811
+ },
1812
+ {
1813
+ "epoch": 2.0,
1814
+ "eval_loss": 0.3617618680000305,
1815
+ "eval_runtime": 36952.264,
1816
+ "eval_samples_per_second": 0.015,
1817
+ "eval_steps_per_second": 0.015,
1818
+ "eval_wer": 22.793975670978952,
1819
+ "step": 2564
1820
+ },
1821
+ {
1822
+ "epoch": 2.004680187207488,
1823
+ "grad_norm": 1.572451114654541,
1824
+ "learning_rate": 0.0007139514151994652,
1825
+ "loss": 0.2147,
1826
+ "step": 2570
1827
+ },
1828
+ {
1829
+ "epoch": 2.012480499219969,
1830
+ "grad_norm": 2.4759023189544678,
1831
+ "learning_rate": 0.000712837084911968,
1832
+ "loss": 0.2015,
1833
+ "step": 2580
1834
+ },
1835
+ {
1836
+ "epoch": 2.0202808112324493,
1837
+ "grad_norm": 1.6903563737869263,
1838
+ "learning_rate": 0.0007117227546244707,
1839
+ "loss": 0.1703,
1840
+ "step": 2590
1841
+ },
1842
+ {
1843
+ "epoch": 2.0280811232449296,
1844
+ "grad_norm": 3.494985580444336,
1845
+ "learning_rate": 0.0007106084243369735,
1846
+ "loss": 0.2063,
1847
+ "step": 2600
1848
+ },
1849
+ {
1850
+ "epoch": 2.0358814352574104,
1851
+ "grad_norm": 1.5024439096450806,
1852
+ "learning_rate": 0.0007094940940494763,
1853
+ "loss": 0.1807,
1854
+ "step": 2610
1855
+ },
1856
+ {
1857
+ "epoch": 2.0436817472698907,
1858
+ "grad_norm": 1.9423105716705322,
1859
+ "learning_rate": 0.0007083797637619791,
1860
+ "loss": 0.1953,
1861
+ "step": 2620
1862
+ },
1863
+ {
1864
+ "epoch": 2.0514820592823715,
1865
+ "grad_norm": 0.8572360277175903,
1866
+ "learning_rate": 0.0007072654334744818,
1867
+ "loss": 0.3423,
1868
+ "step": 2630
1869
+ },
1870
+ {
1871
+ "epoch": 2.059282371294852,
1872
+ "grad_norm": 2.574855327606201,
1873
+ "learning_rate": 0.0007061511031869846,
1874
+ "loss": 0.1916,
1875
+ "step": 2640
1876
+ },
1877
+ {
1878
+ "epoch": 2.067082683307332,
1879
+ "grad_norm": 2.2941219806671143,
1880
+ "learning_rate": 0.0007050367728994874,
1881
+ "loss": 0.2168,
1882
+ "step": 2650
1883
+ },
1884
+ {
1885
+ "epoch": 2.074882995319813,
1886
+ "grad_norm": 2.0448150634765625,
1887
+ "learning_rate": 0.0007039224426119902,
1888
+ "loss": 0.2412,
1889
+ "step": 2660
1890
+ },
1891
+ {
1892
+ "epoch": 2.0826833073322932,
1893
+ "grad_norm": 1.8044381141662598,
1894
+ "learning_rate": 0.000702808112324493,
1895
+ "loss": 0.3261,
1896
+ "step": 2670
1897
+ },
1898
+ {
1899
+ "epoch": 2.090483619344774,
1900
+ "grad_norm": 2.752220630645752,
1901
+ "learning_rate": 0.0007016937820369958,
1902
+ "loss": 0.2007,
1903
+ "step": 2680
1904
+ },
1905
+ {
1906
+ "epoch": 2.0982839313572543,
1907
+ "grad_norm": 1.4598050117492676,
1908
+ "learning_rate": 0.0007005794517494986,
1909
+ "loss": 0.1856,
1910
+ "step": 2690
1911
+ },
1912
+ {
1913
+ "epoch": 2.1060842433697347,
1914
+ "grad_norm": 3.578192710876465,
1915
+ "learning_rate": 0.0006994651214620014,
1916
+ "loss": 0.1991,
1917
+ "step": 2700
1918
+ },
1919
+ {
1920
+ "epoch": 2.1138845553822154,
1921
+ "grad_norm": 2.6971054077148438,
1922
+ "learning_rate": 0.0006983507911745042,
1923
+ "loss": 0.2134,
1924
+ "step": 2710
1925
+ },
1926
+ {
1927
+ "epoch": 2.1216848673946958,
1928
+ "grad_norm": 2.437596559524536,
1929
+ "learning_rate": 0.0006972364608870069,
1930
+ "loss": 0.228,
1931
+ "step": 2720
1932
+ },
1933
+ {
1934
+ "epoch": 2.129485179407176,
1935
+ "grad_norm": 2.6254658699035645,
1936
+ "learning_rate": 0.0006961221305995097,
1937
+ "loss": 0.1671,
1938
+ "step": 2730
1939
+ },
1940
+ {
1941
+ "epoch": 2.137285491419657,
1942
+ "grad_norm": 1.3765720129013062,
1943
+ "learning_rate": 0.0006950078003120125,
1944
+ "loss": 0.2391,
1945
+ "step": 2740
1946
+ },
1947
+ {
1948
+ "epoch": 2.145085803432137,
1949
+ "grad_norm": 2.192396879196167,
1950
+ "learning_rate": 0.0006938934700245153,
1951
+ "loss": 0.2331,
1952
+ "step": 2750
1953
+ },
1954
+ {
1955
+ "epoch": 2.152886115444618,
1956
+ "grad_norm": 1.4418809413909912,
1957
+ "learning_rate": 0.0006927791397370181,
1958
+ "loss": 0.2041,
1959
+ "step": 2760
1960
+ },
1961
+ {
1962
+ "epoch": 2.1606864274570983,
1963
+ "grad_norm": 2.553459882736206,
1964
+ "learning_rate": 0.0006916648094495208,
1965
+ "loss": 0.2342,
1966
+ "step": 2770
1967
+ },
1968
+ {
1969
+ "epoch": 2.1684867394695786,
1970
+ "grad_norm": 1.7199114561080933,
1971
+ "learning_rate": 0.0006905504791620236,
1972
+ "loss": 0.1841,
1973
+ "step": 2780
1974
+ },
1975
+ {
1976
+ "epoch": 2.1762870514820594,
1977
+ "grad_norm": 2.2145979404449463,
1978
+ "learning_rate": 0.0006894361488745264,
1979
+ "loss": 0.1821,
1980
+ "step": 2790
1981
+ },
1982
+ {
1983
+ "epoch": 2.1840873634945397,
1984
+ "grad_norm": 2.434779405593872,
1985
+ "learning_rate": 0.0006883218185870292,
1986
+ "loss": 0.2115,
1987
+ "step": 2800
1988
+ },
1989
+ {
1990
+ "epoch": 2.1918876755070205,
1991
+ "grad_norm": 1.0518474578857422,
1992
+ "learning_rate": 0.0006872074882995319,
1993
+ "loss": 0.2186,
1994
+ "step": 2810
1995
+ },
1996
+ {
1997
+ "epoch": 2.199687987519501,
1998
+ "grad_norm": 1.9856785535812378,
1999
+ "learning_rate": 0.0006860931580120348,
2000
+ "loss": 0.2448,
2001
+ "step": 2820
2002
+ },
2003
+ {
2004
+ "epoch": 2.207488299531981,
2005
+ "grad_norm": 17.3148136138916,
2006
+ "learning_rate": 0.0006849788277245376,
2007
+ "loss": 0.2372,
2008
+ "step": 2830
2009
+ },
2010
+ {
2011
+ "epoch": 2.215288611544462,
2012
+ "grad_norm": 3.4590959548950195,
2013
+ "learning_rate": 0.0006838644974370404,
2014
+ "loss": 0.3179,
2015
+ "step": 2840
2016
+ },
2017
+ {
2018
+ "epoch": 2.223088923556942,
2019
+ "grad_norm": 2.127650260925293,
2020
+ "learning_rate": 0.0006827501671495432,
2021
+ "loss": 0.2445,
2022
+ "step": 2850
2023
+ },
2024
+ {
2025
+ "epoch": 2.230889235569423,
2026
+ "grad_norm": 1.895729660987854,
2027
+ "learning_rate": 0.0006816358368620459,
2028
+ "loss": 0.1966,
2029
+ "step": 2860
2030
+ },
2031
+ {
2032
+ "epoch": 2.2386895475819033,
2033
+ "grad_norm": 1.4693467617034912,
2034
+ "learning_rate": 0.0006805215065745487,
2035
+ "loss": 0.2351,
2036
+ "step": 2870
2037
+ },
2038
+ {
2039
+ "epoch": 2.2464898595943836,
2040
+ "grad_norm": 1.500453233718872,
2041
+ "learning_rate": 0.0006794071762870515,
2042
+ "loss": 0.1946,
2043
+ "step": 2880
2044
+ },
2045
+ {
2046
+ "epoch": 2.2542901716068644,
2047
+ "grad_norm": 2.8631374835968018,
2048
+ "learning_rate": 0.0006782928459995543,
2049
+ "loss": 0.2367,
2050
+ "step": 2890
2051
+ },
2052
+ {
2053
+ "epoch": 2.2620904836193447,
2054
+ "grad_norm": 1.5281766653060913,
2055
+ "learning_rate": 0.000677178515712057,
2056
+ "loss": 0.1855,
2057
+ "step": 2900
2058
+ },
2059
+ {
2060
+ "epoch": 2.2698907956318255,
2061
+ "grad_norm": 2.3027195930480957,
2062
+ "learning_rate": 0.0006760641854245598,
2063
+ "loss": 0.2117,
2064
+ "step": 2910
2065
+ },
2066
+ {
2067
+ "epoch": 2.277691107644306,
2068
+ "grad_norm": 2.9962668418884277,
2069
+ "learning_rate": 0.0006749498551370626,
2070
+ "loss": 0.2441,
2071
+ "step": 2920
2072
+ },
2073
+ {
2074
+ "epoch": 2.285491419656786,
2075
+ "grad_norm": 2.489192008972168,
2076
+ "learning_rate": 0.0006738355248495654,
2077
+ "loss": 0.2212,
2078
+ "step": 2930
2079
+ },
2080
+ {
2081
+ "epoch": 2.293291731669267,
2082
+ "grad_norm": 1.366945743560791,
2083
+ "learning_rate": 0.0006727211945620682,
2084
+ "loss": 0.2003,
2085
+ "step": 2940
2086
+ },
2087
+ {
2088
+ "epoch": 2.3010920436817472,
2089
+ "grad_norm": 1.4768056869506836,
2090
+ "learning_rate": 0.000671606864274571,
2091
+ "loss": 0.3107,
2092
+ "step": 2950
2093
+ },
2094
+ {
2095
+ "epoch": 2.308892355694228,
2096
+ "grad_norm": 1.797979474067688,
2097
+ "learning_rate": 0.0006704925339870738,
2098
+ "loss": 0.1978,
2099
+ "step": 2960
2100
+ },
2101
+ {
2102
+ "epoch": 2.3166926677067083,
2103
+ "grad_norm": 1.9439573287963867,
2104
+ "learning_rate": 0.0006693782036995766,
2105
+ "loss": 0.2306,
2106
+ "step": 2970
2107
+ },
2108
+ {
2109
+ "epoch": 2.3244929797191887,
2110
+ "grad_norm": 1.582478642463684,
2111
+ "learning_rate": 0.0006682638734120794,
2112
+ "loss": 0.2079,
2113
+ "step": 2980
2114
+ },
2115
+ {
2116
+ "epoch": 2.3322932917316694,
2117
+ "grad_norm": 2.1245157718658447,
2118
+ "learning_rate": 0.0006671495431245821,
2119
+ "loss": 0.2258,
2120
+ "step": 2990
2121
+ },
2122
+ {
2123
+ "epoch": 2.3400936037441498,
2124
+ "grad_norm": 2.427675724029541,
2125
+ "learning_rate": 0.0006660352128370849,
2126
+ "loss": 0.2846,
2127
+ "step": 3000
2128
+ },
2129
+ {
2130
+ "epoch": 2.34789391575663,
2131
+ "grad_norm": 0.9095527529716492,
2132
+ "learning_rate": 0.0006649208825495877,
2133
+ "loss": 0.1746,
2134
+ "step": 3010
2135
+ },
2136
+ {
2137
+ "epoch": 2.355694227769111,
2138
+ "grad_norm": 2.0468294620513916,
2139
+ "learning_rate": 0.0006638065522620905,
2140
+ "loss": 0.2645,
2141
+ "step": 3020
2142
+ },
2143
+ {
2144
+ "epoch": 2.363494539781591,
2145
+ "grad_norm": 1.5703836679458618,
2146
+ "learning_rate": 0.0006626922219745933,
2147
+ "loss": 0.1896,
2148
+ "step": 3030
2149
+ },
2150
+ {
2151
+ "epoch": 2.371294851794072,
2152
+ "grad_norm": 2.37263822555542,
2153
+ "learning_rate": 0.000661577891687096,
2154
+ "loss": 0.232,
2155
+ "step": 3040
2156
+ },
2157
+ {
2158
+ "epoch": 2.3790951638065523,
2159
+ "grad_norm": 1.6041433811187744,
2160
+ "learning_rate": 0.0006604635613995988,
2161
+ "loss": 0.2135,
2162
+ "step": 3050
2163
+ },
2164
+ {
2165
+ "epoch": 2.3868954758190326,
2166
+ "grad_norm": 1.87883722782135,
2167
+ "learning_rate": 0.0006593492311121016,
2168
+ "loss": 0.1993,
2169
+ "step": 3060
2170
+ },
2171
+ {
2172
+ "epoch": 2.3946957878315134,
2173
+ "grad_norm": 2.5502099990844727,
2174
+ "learning_rate": 0.0006582349008246044,
2175
+ "loss": 0.2468,
2176
+ "step": 3070
2177
+ },
2178
+ {
2179
+ "epoch": 2.4024960998439937,
2180
+ "grad_norm": 2.681384801864624,
2181
+ "learning_rate": 0.0006571205705371071,
2182
+ "loss": 0.2364,
2183
+ "step": 3080
2184
+ },
2185
+ {
2186
+ "epoch": 2.410296411856474,
2187
+ "grad_norm": 1.2032707929611206,
2188
+ "learning_rate": 0.00065600624024961,
2189
+ "loss": 0.2732,
2190
+ "step": 3090
2191
+ },
2192
+ {
2193
+ "epoch": 2.418096723868955,
2194
+ "grad_norm": 1.553661584854126,
2195
+ "learning_rate": 0.0006548919099621128,
2196
+ "loss": 0.2214,
2197
+ "step": 3100
2198
+ },
2199
+ {
2200
+ "epoch": 2.425897035881435,
2201
+ "grad_norm": 0.9736389517784119,
2202
+ "learning_rate": 0.0006537775796746156,
2203
+ "loss": 0.1778,
2204
+ "step": 3110
2205
+ },
2206
+ {
2207
+ "epoch": 2.433697347893916,
2208
+ "grad_norm": 1.911352276802063,
2209
+ "learning_rate": 0.0006526632493871184,
2210
+ "loss": 0.2062,
2211
+ "step": 3120
2212
+ },
2213
+ {
2214
+ "epoch": 2.4414976599063962,
2215
+ "grad_norm": 1.4338595867156982,
2216
+ "learning_rate": 0.0006515489190996211,
2217
+ "loss": 0.193,
2218
+ "step": 3130
2219
+ },
2220
+ {
2221
+ "epoch": 2.4492979719188765,
2222
+ "grad_norm": 1.3027153015136719,
2223
+ "learning_rate": 0.0006504345888121239,
2224
+ "loss": 0.3175,
2225
+ "step": 3140
2226
+ },
2227
+ {
2228
+ "epoch": 2.4570982839313573,
2229
+ "grad_norm": 2.262709140777588,
2230
+ "learning_rate": 0.0006493202585246267,
2231
+ "loss": 0.2874,
2232
+ "step": 3150
2233
+ },
2234
+ {
2235
+ "epoch": 2.4648985959438376,
2236
+ "grad_norm": 1.36016845703125,
2237
+ "learning_rate": 0.0006482059282371295,
2238
+ "loss": 0.1603,
2239
+ "step": 3160
2240
+ },
2241
+ {
2242
+ "epoch": 2.4726989079563184,
2243
+ "grad_norm": 3.441779613494873,
2244
+ "learning_rate": 0.0006470915979496322,
2245
+ "loss": 0.4564,
2246
+ "step": 3170
2247
+ },
2248
+ {
2249
+ "epoch": 2.4804992199687987,
2250
+ "grad_norm": 1.8022549152374268,
2251
+ "learning_rate": 0.000645977267662135,
2252
+ "loss": 0.1928,
2253
+ "step": 3180
2254
+ },
2255
+ {
2256
+ "epoch": 2.488299531981279,
2257
+ "grad_norm": 2.104497194290161,
2258
+ "learning_rate": 0.0006448629373746378,
2259
+ "loss": 0.2047,
2260
+ "step": 3190
2261
+ },
2262
+ {
2263
+ "epoch": 2.49609984399376,
2264
+ "grad_norm": 2.5888454914093018,
2265
+ "learning_rate": 0.0006437486070871406,
2266
+ "loss": 0.2591,
2267
+ "step": 3200
2268
+ },
2269
+ {
2270
+ "epoch": 2.50390015600624,
2271
+ "grad_norm": 1.3476183414459229,
2272
+ "learning_rate": 0.0006426342767996434,
2273
+ "loss": 0.2636,
2274
+ "step": 3210
2275
+ },
2276
+ {
2277
+ "epoch": 2.511700468018721,
2278
+ "grad_norm": 2.888965606689453,
2279
+ "learning_rate": 0.0006415199465121462,
2280
+ "loss": 0.216,
2281
+ "step": 3220
2282
+ },
2283
+ {
2284
+ "epoch": 2.5195007800312013,
2285
+ "grad_norm": 1.8190357685089111,
2286
+ "learning_rate": 0.000640405616224649,
2287
+ "loss": 0.3498,
2288
+ "step": 3230
2289
+ },
2290
+ {
2291
+ "epoch": 2.5273010920436816,
2292
+ "grad_norm": 1.5132287740707397,
2293
+ "learning_rate": 0.0006392912859371518,
2294
+ "loss": 0.227,
2295
+ "step": 3240
2296
+ },
2297
+ {
2298
+ "epoch": 2.5351014040561624,
2299
+ "grad_norm": 2.8061325550079346,
2300
+ "learning_rate": 0.0006381769556496546,
2301
+ "loss": 0.2089,
2302
+ "step": 3250
2303
+ },
2304
+ {
2305
+ "epoch": 2.5429017160686427,
2306
+ "grad_norm": 2.2521767616271973,
2307
+ "learning_rate": 0.0006370626253621573,
2308
+ "loss": 0.2362,
2309
+ "step": 3260
2310
+ },
2311
+ {
2312
+ "epoch": 2.5507020280811235,
2313
+ "grad_norm": 1.4635623693466187,
2314
+ "learning_rate": 0.0006359482950746601,
2315
+ "loss": 0.1901,
2316
+ "step": 3270
2317
+ },
2318
+ {
2319
+ "epoch": 2.5585023400936038,
2320
+ "grad_norm": 1.9882755279541016,
2321
+ "learning_rate": 0.0006348339647871629,
2322
+ "loss": 0.2387,
2323
+ "step": 3280
2324
+ },
2325
+ {
2326
+ "epoch": 2.566302652106084,
2327
+ "grad_norm": 6.737502098083496,
2328
+ "learning_rate": 0.0006337196344996657,
2329
+ "loss": 0.2278,
2330
+ "step": 3290
2331
+ },
2332
+ {
2333
+ "epoch": 2.574102964118565,
2334
+ "grad_norm": 1.686926245689392,
2335
+ "learning_rate": 0.0006326053042121685,
2336
+ "loss": 0.3118,
2337
+ "step": 3300
2338
+ },
2339
+ {
2340
+ "epoch": 2.581903276131045,
2341
+ "grad_norm": 1.436584234237671,
2342
+ "learning_rate": 0.0006314909739246712,
2343
+ "loss": 0.1787,
2344
+ "step": 3310
2345
+ },
2346
+ {
2347
+ "epoch": 2.589703588143526,
2348
+ "grad_norm": 3.646476984024048,
2349
+ "learning_rate": 0.000630376643637174,
2350
+ "loss": 0.2165,
2351
+ "step": 3320
2352
+ },
2353
+ {
2354
+ "epoch": 2.5975039001560063,
2355
+ "grad_norm": 1.8787113428115845,
2356
+ "learning_rate": 0.0006292623133496768,
2357
+ "loss": 0.1993,
2358
+ "step": 3330
2359
+ },
2360
+ {
2361
+ "epoch": 2.6053042121684866,
2362
+ "grad_norm": 2.4485440254211426,
2363
+ "learning_rate": 0.0006281479830621796,
2364
+ "loss": 0.24,
2365
+ "step": 3340
2366
+ },
2367
+ {
2368
+ "epoch": 2.6131045241809674,
2369
+ "grad_norm": 2.73197865486145,
2370
+ "learning_rate": 0.0006270336527746824,
2371
+ "loss": 0.228,
2372
+ "step": 3350
2373
+ },
2374
+ {
2375
+ "epoch": 2.6209048361934477,
2376
+ "grad_norm": 3.2943315505981445,
2377
+ "learning_rate": 0.0006259193224871852,
2378
+ "loss": 0.2289,
2379
+ "step": 3360
2380
+ },
2381
+ {
2382
+ "epoch": 2.6287051482059285,
2383
+ "grad_norm": 2.165308952331543,
2384
+ "learning_rate": 0.000624804992199688,
2385
+ "loss": 0.2435,
2386
+ "step": 3370
2387
+ },
2388
+ {
2389
+ "epoch": 2.636505460218409,
2390
+ "grad_norm": 2.3766629695892334,
2391
+ "learning_rate": 0.0006236906619121908,
2392
+ "loss": 0.26,
2393
+ "step": 3380
2394
+ },
2395
+ {
2396
+ "epoch": 2.644305772230889,
2397
+ "grad_norm": 1.1527057886123657,
2398
+ "learning_rate": 0.0006225763316246936,
2399
+ "loss": 0.2486,
2400
+ "step": 3390
2401
+ },
2402
+ {
2403
+ "epoch": 2.6521060842433695,
2404
+ "grad_norm": 2.6304874420166016,
2405
+ "learning_rate": 0.0006214620013371963,
2406
+ "loss": 0.3827,
2407
+ "step": 3400
2408
+ },
2409
+ {
2410
+ "epoch": 2.6599063962558502,
2411
+ "grad_norm": 1.5219537019729614,
2412
+ "learning_rate": 0.0006203476710496991,
2413
+ "loss": 0.2231,
2414
+ "step": 3410
2415
+ },
2416
+ {
2417
+ "epoch": 2.667706708268331,
2418
+ "grad_norm": 1.9267528057098389,
2419
+ "learning_rate": 0.0006192333407622019,
2420
+ "loss": 0.2468,
2421
+ "step": 3420
2422
+ },
2423
+ {
2424
+ "epoch": 2.6755070202808113,
2425
+ "grad_norm": 2.247861385345459,
2426
+ "learning_rate": 0.0006181190104747047,
2427
+ "loss": 0.2463,
2428
+ "step": 3430
2429
+ },
2430
+ {
2431
+ "epoch": 2.6833073322932917,
2432
+ "grad_norm": 2.6133053302764893,
2433
+ "learning_rate": 0.0006170046801872074,
2434
+ "loss": 0.2636,
2435
+ "step": 3440
2436
+ },
2437
+ {
2438
+ "epoch": 2.691107644305772,
2439
+ "grad_norm": 1.4675954580307007,
2440
+ "learning_rate": 0.0006158903498997102,
2441
+ "loss": 0.2141,
2442
+ "step": 3450
2443
+ },
2444
+ {
2445
+ "epoch": 2.6989079563182528,
2446
+ "grad_norm": 3.3972527980804443,
2447
+ "learning_rate": 0.000614776019612213,
2448
+ "loss": 0.2102,
2449
+ "step": 3460
2450
+ },
2451
+ {
2452
+ "epoch": 2.706708268330733,
2453
+ "grad_norm": 2.0020527839660645,
2454
+ "learning_rate": 0.0006136616893247158,
2455
+ "loss": 0.2618,
2456
+ "step": 3470
2457
+ },
2458
+ {
2459
+ "epoch": 2.714508580343214,
2460
+ "grad_norm": 1.4799424409866333,
2461
+ "learning_rate": 0.0006125473590372186,
2462
+ "loss": 0.2644,
2463
+ "step": 3480
2464
+ },
2465
+ {
2466
+ "epoch": 2.722308892355694,
2467
+ "grad_norm": 2.207921028137207,
2468
+ "learning_rate": 0.0006114330287497214,
2469
+ "loss": 0.2496,
2470
+ "step": 3490
2471
+ },
2472
+ {
2473
+ "epoch": 2.7301092043681745,
2474
+ "grad_norm": 2.7361607551574707,
2475
+ "learning_rate": 0.0006103186984622242,
2476
+ "loss": 0.1917,
2477
+ "step": 3500
2478
+ },
2479
+ {
2480
+ "epoch": 2.7379095163806553,
2481
+ "grad_norm": 2.6031532287597656,
2482
+ "learning_rate": 0.000609204368174727,
2483
+ "loss": 0.2358,
2484
+ "step": 3510
2485
+ },
2486
+ {
2487
+ "epoch": 2.7457098283931356,
2488
+ "grad_norm": 1.442651629447937,
2489
+ "learning_rate": 0.0006080900378872299,
2490
+ "loss": 0.2929,
2491
+ "step": 3520
2492
+ },
2493
+ {
2494
+ "epoch": 2.7535101404056164,
2495
+ "grad_norm": 2.853076457977295,
2496
+ "learning_rate": 0.0006069757075997325,
2497
+ "loss": 0.2287,
2498
+ "step": 3530
2499
+ },
2500
+ {
2501
+ "epoch": 2.7613104524180967,
2502
+ "grad_norm": 1.827863335609436,
2503
+ "learning_rate": 0.0006058613773122353,
2504
+ "loss": 0.284,
2505
+ "step": 3540
2506
+ },
2507
+ {
2508
+ "epoch": 2.769110764430577,
2509
+ "grad_norm": 1.29642915725708,
2510
+ "learning_rate": 0.0006047470470247382,
2511
+ "loss": 0.2156,
2512
+ "step": 3550
2513
+ },
2514
+ {
2515
+ "epoch": 2.776911076443058,
2516
+ "grad_norm": 2.0758543014526367,
2517
+ "learning_rate": 0.000603632716737241,
2518
+ "loss": 0.4312,
2519
+ "step": 3560
2520
+ },
2521
+ {
2522
+ "epoch": 2.784711388455538,
2523
+ "grad_norm": 2.1832942962646484,
2524
+ "learning_rate": 0.0006025183864497438,
2525
+ "loss": 0.22,
2526
+ "step": 3570
2527
+ },
2528
+ {
2529
+ "epoch": 2.792511700468019,
2530
+ "grad_norm": 1.541040301322937,
2531
+ "learning_rate": 0.0006014040561622464,
2532
+ "loss": 0.2452,
2533
+ "step": 3580
2534
+ },
2535
+ {
2536
+ "epoch": 2.800312012480499,
2537
+ "grad_norm": 1.5947539806365967,
2538
+ "learning_rate": 0.0006002897258747492,
2539
+ "loss": 0.2708,
2540
+ "step": 3590
2541
+ },
2542
+ {
2543
+ "epoch": 2.8081123244929795,
2544
+ "grad_norm": 2.130390167236328,
2545
+ "learning_rate": 0.000599175395587252,
2546
+ "loss": 0.2194,
2547
+ "step": 3600
2548
+ },
2549
+ {
2550
+ "epoch": 2.8159126365054603,
2551
+ "grad_norm": 2.382166862487793,
2552
+ "learning_rate": 0.0005980610652997549,
2553
+ "loss": 0.1931,
2554
+ "step": 3610
2555
+ },
2556
+ {
2557
+ "epoch": 2.8237129485179406,
2558
+ "grad_norm": 4.421852111816406,
2559
+ "learning_rate": 0.0005969467350122577,
2560
+ "loss": 0.3081,
2561
+ "step": 3620
2562
+ },
2563
+ {
2564
+ "epoch": 2.8315132605304214,
2565
+ "grad_norm": 1.1889768838882446,
2566
+ "learning_rate": 0.0005958324047247605,
2567
+ "loss": 0.2134,
2568
+ "step": 3630
2569
+ },
2570
+ {
2571
+ "epoch": 2.8393135725429017,
2572
+ "grad_norm": 2.6204874515533447,
2573
+ "learning_rate": 0.0005947180744372633,
2574
+ "loss": 0.2128,
2575
+ "step": 3640
2576
+ },
2577
+ {
2578
+ "epoch": 2.847113884555382,
2579
+ "grad_norm": 1.4705913066864014,
2580
+ "learning_rate": 0.0005936037441497661,
2581
+ "loss": 0.1894,
2582
+ "step": 3650
2583
+ },
2584
+ {
2585
+ "epoch": 2.854914196567863,
2586
+ "grad_norm": 3.110135555267334,
2587
+ "learning_rate": 0.0005924894138622688,
2588
+ "loss": 0.2072,
2589
+ "step": 3660
2590
+ },
2591
+ {
2592
+ "epoch": 2.862714508580343,
2593
+ "grad_norm": 1.3255491256713867,
2594
+ "learning_rate": 0.0005913750835747716,
2595
+ "loss": 0.2325,
2596
+ "step": 3670
2597
+ },
2598
+ {
2599
+ "epoch": 2.870514820592824,
2600
+ "grad_norm": 2.2520713806152344,
2601
+ "learning_rate": 0.0005902607532872744,
2602
+ "loss": 0.2121,
2603
+ "step": 3680
2604
+ },
2605
+ {
2606
+ "epoch": 2.8783151326053042,
2607
+ "grad_norm": 1.4630913734436035,
2608
+ "learning_rate": 0.0005891464229997772,
2609
+ "loss": 0.2281,
2610
+ "step": 3690
2611
+ },
2612
+ {
2613
+ "epoch": 2.8861154446177846,
2614
+ "grad_norm": 2.0491292476654053,
2615
+ "learning_rate": 0.00058803209271228,
2616
+ "loss": 0.2227,
2617
+ "step": 3700
2618
+ },
2619
+ {
2620
+ "epoch": 2.8939157566302653,
2621
+ "grad_norm": 6.133053302764893,
2622
+ "learning_rate": 0.0005869177624247827,
2623
+ "loss": 0.3106,
2624
+ "step": 3710
2625
+ },
2626
+ {
2627
+ "epoch": 2.9017160686427457,
2628
+ "grad_norm": 2.3226382732391357,
2629
+ "learning_rate": 0.0005858034321372855,
2630
+ "loss": 0.2193,
2631
+ "step": 3720
2632
+ },
2633
+ {
2634
+ "epoch": 2.9095163806552264,
2635
+ "grad_norm": 1.351330041885376,
2636
+ "learning_rate": 0.0005846891018497883,
2637
+ "loss": 0.1928,
2638
+ "step": 3730
2639
+ },
2640
+ {
2641
+ "epoch": 2.9173166926677068,
2642
+ "grad_norm": 0.9889002442359924,
2643
+ "learning_rate": 0.0005835747715622911,
2644
+ "loss": 0.2395,
2645
+ "step": 3740
2646
+ },
2647
+ {
2648
+ "epoch": 2.925117004680187,
2649
+ "grad_norm": 3.9231808185577393,
2650
+ "learning_rate": 0.0005824604412747938,
2651
+ "loss": 0.2288,
2652
+ "step": 3750
2653
+ },
2654
+ {
2655
+ "epoch": 2.932917316692668,
2656
+ "grad_norm": 1.1299773454666138,
2657
+ "learning_rate": 0.0005813461109872967,
2658
+ "loss": 0.1996,
2659
+ "step": 3760
2660
+ },
2661
+ {
2662
+ "epoch": 2.940717628705148,
2663
+ "grad_norm": 1.894411563873291,
2664
+ "learning_rate": 0.0005802317806997995,
2665
+ "loss": 0.2444,
2666
+ "step": 3770
2667
+ },
2668
+ {
2669
+ "epoch": 2.948517940717629,
2670
+ "grad_norm": 3.100918769836426,
2671
+ "learning_rate": 0.0005791174504123023,
2672
+ "loss": 0.2723,
2673
+ "step": 3780
2674
+ },
2675
+ {
2676
+ "epoch": 2.9563182527301093,
2677
+ "grad_norm": 2.921398639678955,
2678
+ "learning_rate": 0.0005780031201248051,
2679
+ "loss": 0.1963,
2680
+ "step": 3790
2681
+ },
2682
+ {
2683
+ "epoch": 2.9641185647425896,
2684
+ "grad_norm": 2.898193120956421,
2685
+ "learning_rate": 0.0005768887898373078,
2686
+ "loss": 0.2262,
2687
+ "step": 3800
2688
+ },
2689
+ {
2690
+ "epoch": 2.97191887675507,
2691
+ "grad_norm": 1.8510135412216187,
2692
+ "learning_rate": 0.0005757744595498106,
2693
+ "loss": 0.2253,
2694
+ "step": 3810
2695
+ },
2696
+ {
2697
+ "epoch": 2.9797191887675507,
2698
+ "grad_norm": 2.716972827911377,
2699
+ "learning_rate": 0.0005746601292623134,
2700
+ "loss": 0.222,
2701
+ "step": 3820
2702
+ },
2703
+ {
2704
+ "epoch": 2.9875195007800315,
2705
+ "grad_norm": 2.466111660003662,
2706
+ "learning_rate": 0.0005735457989748162,
2707
+ "loss": 0.2903,
2708
+ "step": 3830
2709
+ },
2710
+ {
2711
+ "epoch": 2.995319812792512,
2712
+ "grad_norm": 2.409747838973999,
2713
+ "learning_rate": 0.0005724314686873189,
2714
+ "loss": 0.3088,
2715
+ "step": 3840
2716
+ },
2717
+ {
2718
+ "epoch": 3.0,
2719
+ "eval_loss": 0.34428906440734863,
2720
+ "eval_runtime": 557.5413,
2721
+ "eval_samples_per_second": 0.986,
2722
+ "eval_steps_per_second": 0.986,
2723
+ "eval_wer": 24.454527901139215,
2724
+ "step": 3846
2725
+ }
2726
+ ],
2727
+ "logging_steps": 10,
2728
+ "max_steps": 8974,
2729
+ "num_input_tokens_seen": 0,
2730
+ "num_train_epochs": 7,
2731
+ "save_steps": 500,
2732
+ "stateful_callbacks": {
2733
+ "TrainerControl": {
2734
+ "args": {
2735
+ "should_epoch_stop": false,
2736
+ "should_evaluate": false,
2737
+ "should_log": false,
2738
+ "should_save": true,
2739
+ "should_training_stop": false
2740
+ },
2741
+ "attributes": {}
2742
+ }
2743
+ },
2744
+ "total_flos": 3.38849691254784e+18,
2745
+ "train_batch_size": 3,
2746
+ "trial_name": null,
2747
+ "trial_params": null
2748
+ }
checkpoint-3846/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87bdde76802c6f6975c7a62016872baaa0d2d042f00a6968d4a9fadade014aa7
3
+ size 5432
checkpoint-5128/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openai/whisper-small
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.1
checkpoint-5128/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "WhisperForConditionalGeneration",
5
+ "parent_library": "transformers.models.whisper.modeling_whisper"
6
+ },
7
+ "base_model_name_or_path": "openai/whisper-small",
8
+ "bias": "none",
9
+ "corda_config": null,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 64,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "r": 32,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "q_proj",
31
+ "v_proj"
32
+ ],
33
+ "task_type": null,
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-5128/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db6500851e4c23f2fdbc19fbaf720c94b1d2fb427b034746b2ee225fb915cd26
3
+ size 14176064
checkpoint-5128/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85ed114d260da569a3506e6d06e0c4bbe851146f2f984d9a7a2d6b38049f52ce
3
+ size 28432570
checkpoint-5128/preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
checkpoint-5128/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20f106a2e11d68effc698b58fefbecdb20e9ae022c8ce82d791541a4f1277fa6
3
+ size 14244
checkpoint-5128/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4ea290651c7978e28e955dab01609852087e0a268908587c5b313eac7ba2bd5
3
+ size 988
checkpoint-5128/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2376d1d1866375dad0a10468cbd5d9af6fe0bf3766014dca978a7a379cc04208
3
+ size 1064
checkpoint-5128/trainer_state.json ADDED
@@ -0,0 +1,3653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 4.0,
5
+ "eval_steps": 500,
6
+ "global_step": 5128,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0078003120124804995,
13
+ "grad_norm": 2.144841432571411,
14
+ "learning_rate": 0.0009989971027412525,
15
+ "loss": 1.1174,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.015600624024960999,
20
+ "grad_norm": 1.0625462532043457,
21
+ "learning_rate": 0.0009978827724537553,
22
+ "loss": 0.5035,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.0234009360374415,
27
+ "grad_norm": 1.619573950767517,
28
+ "learning_rate": 0.0009967684421662581,
29
+ "loss": 0.3841,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.031201248049921998,
34
+ "grad_norm": 3.2681403160095215,
35
+ "learning_rate": 0.000995654111878761,
36
+ "loss": 0.4974,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.0390015600624025,
41
+ "grad_norm": 1.5944786071777344,
42
+ "learning_rate": 0.0009945397815912637,
43
+ "loss": 0.4797,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.046801872074883,
48
+ "grad_norm": 1.8234444856643677,
49
+ "learning_rate": 0.0009934254513037665,
50
+ "loss": 0.637,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.054602184087363496,
55
+ "grad_norm": 3.790844440460205,
56
+ "learning_rate": 0.0009923111210162691,
57
+ "loss": 0.4479,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.062402496099843996,
62
+ "grad_norm": 2.9351046085357666,
63
+ "learning_rate": 0.000991196790728772,
64
+ "loss": 0.4332,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07020280811232449,
69
+ "grad_norm": 2.2770025730133057,
70
+ "learning_rate": 0.0009900824604412747,
71
+ "loss": 0.4399,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.078003120124805,
76
+ "grad_norm": 1.86591637134552,
77
+ "learning_rate": 0.0009889681301537775,
78
+ "loss": 0.407,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.08580343213728549,
83
+ "grad_norm": 1.6851640939712524,
84
+ "learning_rate": 0.0009878537998662805,
85
+ "loss": 0.3862,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.093603744149766,
90
+ "grad_norm": 2.5469818115234375,
91
+ "learning_rate": 0.0009867394695787831,
92
+ "loss": 0.4166,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.10140405616224649,
97
+ "grad_norm": 1.8210259675979614,
98
+ "learning_rate": 0.000985625139291286,
99
+ "loss": 0.3785,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.10920436817472699,
104
+ "grad_norm": 2.031057119369507,
105
+ "learning_rate": 0.0009845108090037887,
106
+ "loss": 0.4177,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.11700468018720749,
111
+ "grad_norm": 1.6646612882614136,
112
+ "learning_rate": 0.0009833964787162915,
113
+ "loss": 0.402,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.12480499219968799,
118
+ "grad_norm": 1.8680285215377808,
119
+ "learning_rate": 0.0009822821484287943,
120
+ "loss": 0.3282,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.13260530421216848,
125
+ "grad_norm": 1.8039604425430298,
126
+ "learning_rate": 0.0009811678181412971,
127
+ "loss": 0.3536,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.14040561622464898,
132
+ "grad_norm": 3.3018901348114014,
133
+ "learning_rate": 0.0009800534878538,
134
+ "loss": 0.4595,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.1482059282371295,
139
+ "grad_norm": 3.684013843536377,
140
+ "learning_rate": 0.0009789391575663027,
141
+ "loss": 0.4288,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.15600624024961,
146
+ "grad_norm": 1.4512592554092407,
147
+ "learning_rate": 0.0009778248272788055,
148
+ "loss": 0.5086,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.16380655226209048,
153
+ "grad_norm": 2.3981761932373047,
154
+ "learning_rate": 0.0009767104969913081,
155
+ "loss": 0.4084,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.17160686427457097,
160
+ "grad_norm": 3.7943010330200195,
161
+ "learning_rate": 0.000975596166703811,
162
+ "loss": 0.4524,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.1794071762870515,
167
+ "grad_norm": 2.657606840133667,
168
+ "learning_rate": 0.0009744818364163138,
169
+ "loss": 0.3592,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.187207488299532,
174
+ "grad_norm": 2.7629363536834717,
175
+ "learning_rate": 0.0009733675061288166,
176
+ "loss": 0.4263,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.19500780031201248,
181
+ "grad_norm": 1.3749983310699463,
182
+ "learning_rate": 0.0009722531758413193,
183
+ "loss": 0.48,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.20280811232449297,
188
+ "grad_norm": 2.648716449737549,
189
+ "learning_rate": 0.0009711388455538221,
190
+ "loss": 0.416,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.21060842433697347,
195
+ "grad_norm": 1.5672308206558228,
196
+ "learning_rate": 0.0009700245152663249,
197
+ "loss": 0.4223,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.21840873634945399,
202
+ "grad_norm": 2.618163585662842,
203
+ "learning_rate": 0.0009689101849788277,
204
+ "loss": 0.4172,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.22620904836193448,
209
+ "grad_norm": 3.6365268230438232,
210
+ "learning_rate": 0.0009677958546913305,
211
+ "loss": 0.5501,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.23400936037441497,
216
+ "grad_norm": 2.740039825439453,
217
+ "learning_rate": 0.0009666815244038332,
218
+ "loss": 0.3553,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.24180967238689546,
223
+ "grad_norm": 3.406210422515869,
224
+ "learning_rate": 0.000965567194116336,
225
+ "loss": 0.3518,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.24960998439937598,
230
+ "grad_norm": 1.4707075357437134,
231
+ "learning_rate": 0.000964452863828839,
232
+ "loss": 0.3452,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.2574102964118565,
237
+ "grad_norm": 1.608324408531189,
238
+ "learning_rate": 0.0009633385335413417,
239
+ "loss": 0.4908,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.26521060842433697,
244
+ "grad_norm": 4.090480327606201,
245
+ "learning_rate": 0.0009622242032538444,
246
+ "loss": 0.4597,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.27301092043681746,
251
+ "grad_norm": 2.2214395999908447,
252
+ "learning_rate": 0.0009611098729663472,
253
+ "loss": 0.4552,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.28081123244929795,
258
+ "grad_norm": 1.9134166240692139,
259
+ "learning_rate": 0.00095999554267885,
260
+ "loss": 0.3571,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.28861154446177845,
265
+ "grad_norm": 1.8127851486206055,
266
+ "learning_rate": 0.0009588812123913528,
267
+ "loss": 0.3808,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.296411856474259,
272
+ "grad_norm": 2.2262885570526123,
273
+ "learning_rate": 0.0009577668821038556,
274
+ "loss": 0.4099,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3042121684867395,
279
+ "grad_norm": 2.8041303157806396,
280
+ "learning_rate": 0.0009566525518163583,
281
+ "loss": 0.3988,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.31201248049922,
286
+ "grad_norm": 6.797432899475098,
287
+ "learning_rate": 0.0009555382215288611,
288
+ "loss": 0.4728,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.31981279251170047,
293
+ "grad_norm": 3.1861369609832764,
294
+ "learning_rate": 0.000954423891241364,
295
+ "loss": 0.3502,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.32761310452418096,
300
+ "grad_norm": 2.9223642349243164,
301
+ "learning_rate": 0.0009533095609538667,
302
+ "loss": 0.4215,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.33541341653666146,
307
+ "grad_norm": 6.848895072937012,
308
+ "learning_rate": 0.0009521952306663694,
309
+ "loss": 0.415,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.34321372854914195,
314
+ "grad_norm": 9.054282188415527,
315
+ "learning_rate": 0.0009510809003788722,
316
+ "loss": 0.4667,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.35101404056162244,
321
+ "grad_norm": 2.3005900382995605,
322
+ "learning_rate": 0.0009499665700913752,
323
+ "loss": 0.6565,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.358814352574103,
328
+ "grad_norm": 2.9467573165893555,
329
+ "learning_rate": 0.000948852239803878,
330
+ "loss": 0.3837,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.3666146645865835,
335
+ "grad_norm": 1.5977652072906494,
336
+ "learning_rate": 0.0009477379095163808,
337
+ "loss": 0.407,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.374414976599064,
342
+ "grad_norm": 2.8274600505828857,
343
+ "learning_rate": 0.0009466235792288835,
344
+ "loss": 0.4501,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.38221528861154447,
349
+ "grad_norm": 1.8566502332687378,
350
+ "learning_rate": 0.0009455092489413863,
351
+ "loss": 0.3146,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.39001560062402496,
356
+ "grad_norm": 2.5871951580047607,
357
+ "learning_rate": 0.0009443949186538891,
358
+ "loss": 0.3335,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.39781591263650545,
363
+ "grad_norm": 2.0552711486816406,
364
+ "learning_rate": 0.0009432805883663919,
365
+ "loss": 0.3698,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.40561622464898595,
370
+ "grad_norm": 1.5244548320770264,
371
+ "learning_rate": 0.0009421662580788946,
372
+ "loss": 0.581,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.41341653666146644,
377
+ "grad_norm": 1.5146633386611938,
378
+ "learning_rate": 0.0009410519277913974,
379
+ "loss": 0.3634,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.42121684867394693,
384
+ "grad_norm": 2.394819736480713,
385
+ "learning_rate": 0.0009399375975039002,
386
+ "loss": 0.338,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.4290171606864275,
391
+ "grad_norm": 2.3500325679779053,
392
+ "learning_rate": 0.000938823267216403,
393
+ "loss": 0.4025,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.43681747269890797,
398
+ "grad_norm": 2.4186370372772217,
399
+ "learning_rate": 0.0009377089369289058,
400
+ "loss": 0.4095,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.44461778471138846,
405
+ "grad_norm": 1.9770065546035767,
406
+ "learning_rate": 0.0009365946066414085,
407
+ "loss": 0.4275,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.45241809672386896,
412
+ "grad_norm": 1.7679632902145386,
413
+ "learning_rate": 0.0009354802763539114,
414
+ "loss": 0.3949,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.46021840873634945,
419
+ "grad_norm": 2.0794620513916016,
420
+ "learning_rate": 0.0009343659460664142,
421
+ "loss": 0.4208,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.46801872074882994,
426
+ "grad_norm": 2.677424192428589,
427
+ "learning_rate": 0.000933251615778917,
428
+ "loss": 0.4089,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.47581903276131043,
433
+ "grad_norm": 1.526112675666809,
434
+ "learning_rate": 0.0009321372854914197,
435
+ "loss": 0.4196,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.4836193447737909,
440
+ "grad_norm": 1.8656370639801025,
441
+ "learning_rate": 0.0009310229552039225,
442
+ "loss": 0.3732,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.4914196567862715,
447
+ "grad_norm": 3.3338847160339355,
448
+ "learning_rate": 0.0009299086249164253,
449
+ "loss": 0.4231,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.49921996879875197,
454
+ "grad_norm": 2.1057350635528564,
455
+ "learning_rate": 0.0009287942946289281,
456
+ "loss": 0.3921,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.5070202808112324,
461
+ "grad_norm": 1.544977068901062,
462
+ "learning_rate": 0.0009276799643414309,
463
+ "loss": 0.3748,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.514820592823713,
468
+ "grad_norm": 3.4070258140563965,
469
+ "learning_rate": 0.0009265656340539336,
470
+ "loss": 0.4027,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5226209048361935,
475
+ "grad_norm": 5.5486931800842285,
476
+ "learning_rate": 0.0009254513037664364,
477
+ "loss": 0.4326,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.5304212168486739,
482
+ "grad_norm": 3.6824769973754883,
483
+ "learning_rate": 0.0009243369734789392,
484
+ "loss": 0.4809,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5382215288611545,
489
+ "grad_norm": 6.3154778480529785,
490
+ "learning_rate": 0.000923222643191442,
491
+ "loss": 0.3588,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.5460218408736349,
496
+ "grad_norm": 3.133465528488159,
497
+ "learning_rate": 0.0009221083129039447,
498
+ "loss": 0.4712,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.5538221528861155,
503
+ "grad_norm": 4.222598552703857,
504
+ "learning_rate": 0.0009209939826164475,
505
+ "loss": 0.4135,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.5616224648985959,
510
+ "grad_norm": 4.6125078201293945,
511
+ "learning_rate": 0.0009198796523289504,
512
+ "loss": 0.393,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.5694227769110765,
517
+ "grad_norm": 6.543318748474121,
518
+ "learning_rate": 0.0009187653220414532,
519
+ "loss": 0.6138,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.5772230889235569,
524
+ "grad_norm": 2.596463680267334,
525
+ "learning_rate": 0.000917650991753956,
526
+ "loss": 0.3694,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.5850234009360374,
531
+ "grad_norm": 2.428490161895752,
532
+ "learning_rate": 0.0009165366614664587,
533
+ "loss": 0.4535,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.592823712948518,
538
+ "grad_norm": 1.8790688514709473,
539
+ "learning_rate": 0.0009154223311789615,
540
+ "loss": 0.3986,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6006240249609984,
545
+ "grad_norm": 3.141587734222412,
546
+ "learning_rate": 0.0009143080008914643,
547
+ "loss": 0.3881,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.608424336973479,
552
+ "grad_norm": 2.125810146331787,
553
+ "learning_rate": 0.0009131936706039671,
554
+ "loss": 0.4225,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.6162246489859594,
559
+ "grad_norm": 2.532404661178589,
560
+ "learning_rate": 0.0009120793403164698,
561
+ "loss": 0.3423,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.62402496099844,
566
+ "grad_norm": 3.6324350833892822,
567
+ "learning_rate": 0.0009109650100289726,
568
+ "loss": 0.4205,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6318252730109204,
573
+ "grad_norm": 1.4804415702819824,
574
+ "learning_rate": 0.0009098506797414754,
575
+ "loss": 0.4042,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.6396255850234009,
580
+ "grad_norm": 1.5140562057495117,
581
+ "learning_rate": 0.0009087363494539782,
582
+ "loss": 0.3056,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.6474258970358814,
587
+ "grad_norm": 2.470576047897339,
588
+ "learning_rate": 0.000907622019166481,
589
+ "loss": 0.391,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.6552262090483619,
594
+ "grad_norm": 3.4496209621429443,
595
+ "learning_rate": 0.0009065076888789837,
596
+ "loss": 0.4163,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.6630265210608425,
601
+ "grad_norm": 1.8823250532150269,
602
+ "learning_rate": 0.0009053933585914866,
603
+ "loss": 0.3877,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.6708268330733229,
608
+ "grad_norm": 2.492297410964966,
609
+ "learning_rate": 0.0009042790283039894,
610
+ "loss": 0.3542,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.6786271450858035,
615
+ "grad_norm": 3.977569341659546,
616
+ "learning_rate": 0.0009031646980164922,
617
+ "loss": 0.4168,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.6864274570982839,
622
+ "grad_norm": 3.938462495803833,
623
+ "learning_rate": 0.0009020503677289949,
624
+ "loss": 0.4894,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.6942277691107644,
629
+ "grad_norm": 1.3457701206207275,
630
+ "learning_rate": 0.0009009360374414977,
631
+ "loss": 0.4903,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7020280811232449,
636
+ "grad_norm": 6.3473124504089355,
637
+ "learning_rate": 0.0008998217071540005,
638
+ "loss": 0.4766,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7098283931357254,
643
+ "grad_norm": 3.145792245864868,
644
+ "learning_rate": 0.0008987073768665033,
645
+ "loss": 0.4119,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.717628705148206,
650
+ "grad_norm": 1.809446930885315,
651
+ "learning_rate": 0.0008975930465790061,
652
+ "loss": 0.3991,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.7254290171606864,
657
+ "grad_norm": 1.7960044145584106,
658
+ "learning_rate": 0.0008964787162915088,
659
+ "loss": 0.3095,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.733229329173167,
664
+ "grad_norm": 2.9710285663604736,
665
+ "learning_rate": 0.0008953643860040116,
666
+ "loss": 0.5104,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.7410296411856474,
671
+ "grad_norm": 2.460524797439575,
672
+ "learning_rate": 0.0008942500557165144,
673
+ "loss": 0.4332,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.748829953198128,
678
+ "grad_norm": 1.6166704893112183,
679
+ "learning_rate": 0.0008931357254290172,
680
+ "loss": 0.3856,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.7566302652106084,
685
+ "grad_norm": 1.747750163078308,
686
+ "learning_rate": 0.0008920213951415199,
687
+ "loss": 0.3973,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.7644305772230889,
692
+ "grad_norm": 1.4469414949417114,
693
+ "learning_rate": 0.0008909070648540227,
694
+ "loss": 0.3344,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.7722308892355694,
699
+ "grad_norm": 4.661273956298828,
700
+ "learning_rate": 0.0008897927345665256,
701
+ "loss": 0.6003,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.7800312012480499,
706
+ "grad_norm": 3.6588950157165527,
707
+ "learning_rate": 0.0008886784042790284,
708
+ "loss": 0.473,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.7878315132605305,
713
+ "grad_norm": 2.208383798599243,
714
+ "learning_rate": 0.0008876755070202809,
715
+ "loss": 0.3899,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.7956318252730109,
720
+ "grad_norm": 2.3569576740264893,
721
+ "learning_rate": 0.0008865611767327836,
722
+ "loss": 0.3871,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8034321372854915,
727
+ "grad_norm": 2.7071454524993896,
728
+ "learning_rate": 0.0008854468464452864,
729
+ "loss": 0.3149,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8112324492979719,
734
+ "grad_norm": 2.8024532794952393,
735
+ "learning_rate": 0.0008843325161577892,
736
+ "loss": 0.3328,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.8190327613104524,
741
+ "grad_norm": 3.0969290733337402,
742
+ "learning_rate": 0.000883218185870292,
743
+ "loss": 0.3948,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.8268330733229329,
748
+ "grad_norm": 2.982484817504883,
749
+ "learning_rate": 0.0008821038555827947,
750
+ "loss": 0.4323,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.8346333853354134,
755
+ "grad_norm": 3.133814573287964,
756
+ "learning_rate": 0.0008809895252952975,
757
+ "loss": 0.4393,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.8424336973478939,
762
+ "grad_norm": 3.3123364448547363,
763
+ "learning_rate": 0.0008798751950078003,
764
+ "loss": 0.3244,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.8502340093603744,
769
+ "grad_norm": 2.308555841445923,
770
+ "learning_rate": 0.0008787608647203032,
771
+ "loss": 0.424,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.858034321372855,
776
+ "grad_norm": 3.654137134552002,
777
+ "learning_rate": 0.000877646534432806,
778
+ "loss": 0.3445,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.8658346333853354,
783
+ "grad_norm": 2.149843692779541,
784
+ "learning_rate": 0.0008765322041453087,
785
+ "loss": 0.3398,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.8736349453978159,
790
+ "grad_norm": 3.1334431171417236,
791
+ "learning_rate": 0.0008754178738578115,
792
+ "loss": 0.3333,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.8814352574102964,
797
+ "grad_norm": 2.2942090034484863,
798
+ "learning_rate": 0.0008743035435703143,
799
+ "loss": 0.4188,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.8892355694227769,
804
+ "grad_norm": 2.0195343494415283,
805
+ "learning_rate": 0.0008731892132828171,
806
+ "loss": 0.4047,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.8970358814352574,
811
+ "grad_norm": 2.3850839138031006,
812
+ "learning_rate": 0.0008720748829953198,
813
+ "loss": 0.3931,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.9048361934477379,
818
+ "grad_norm": 1.6200228929519653,
819
+ "learning_rate": 0.0008709605527078226,
820
+ "loss": 0.409,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.9126365054602185,
825
+ "grad_norm": 2.9001989364624023,
826
+ "learning_rate": 0.0008698462224203254,
827
+ "loss": 0.4289,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.9204368174726989,
832
+ "grad_norm": 1.52889883518219,
833
+ "learning_rate": 0.0008687318921328282,
834
+ "loss": 0.3575,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.9282371294851794,
839
+ "grad_norm": 2.359733819961548,
840
+ "learning_rate": 0.000867617561845331,
841
+ "loss": 0.3837,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.9360374414976599,
846
+ "grad_norm": 2.3807597160339355,
847
+ "learning_rate": 0.0008665032315578337,
848
+ "loss": 0.4206,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.9438377535101404,
853
+ "grad_norm": 1.8366179466247559,
854
+ "learning_rate": 0.0008653889012703365,
855
+ "loss": 0.3101,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.9516380655226209,
860
+ "grad_norm": 3.1048014163970947,
861
+ "learning_rate": 0.0008642745709828393,
862
+ "loss": 0.4104,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.9594383775351014,
867
+ "grad_norm": 1.5314342975616455,
868
+ "learning_rate": 0.0008631602406953422,
869
+ "loss": 0.3539,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.9672386895475819,
874
+ "grad_norm": 2.8501791954040527,
875
+ "learning_rate": 0.0008620459104078449,
876
+ "loss": 0.4104,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.9750390015600624,
881
+ "grad_norm": 5.708191394805908,
882
+ "learning_rate": 0.0008609315801203477,
883
+ "loss": 0.4038,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.982839313572543,
888
+ "grad_norm": 2.173867702484131,
889
+ "learning_rate": 0.0008598172498328505,
890
+ "loss": 0.338,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.9906396255850234,
895
+ "grad_norm": 2.7057418823242188,
896
+ "learning_rate": 0.0008587029195453533,
897
+ "loss": 0.3941,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.9984399375975039,
902
+ "grad_norm": 1.3492989540100098,
903
+ "learning_rate": 0.0008575885892578561,
904
+ "loss": 0.3696,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 1.0,
909
+ "eval_loss": 0.4044143855571747,
910
+ "eval_runtime": 635.8286,
911
+ "eval_samples_per_second": 0.865,
912
+ "eval_steps_per_second": 0.865,
913
+ "eval_wer": 26.665379416875844,
914
+ "step": 1282
915
+ },
916
+ {
917
+ "epoch": 1.0062402496099845,
918
+ "grad_norm": 2.5727291107177734,
919
+ "learning_rate": 0.0008564742589703588,
920
+ "loss": 0.3369,
921
+ "step": 1290
922
+ },
923
+ {
924
+ "epoch": 1.0140405616224648,
925
+ "grad_norm": 2.681490182876587,
926
+ "learning_rate": 0.0008553599286828616,
927
+ "loss": 0.2434,
928
+ "step": 1300
929
+ },
930
+ {
931
+ "epoch": 1.0218408736349454,
932
+ "grad_norm": 2.0296504497528076,
933
+ "learning_rate": 0.0008542455983953644,
934
+ "loss": 0.2122,
935
+ "step": 1310
936
+ },
937
+ {
938
+ "epoch": 1.029641185647426,
939
+ "grad_norm": 2.277512311935425,
940
+ "learning_rate": 0.0008531312681078672,
941
+ "loss": 0.3932,
942
+ "step": 1320
943
+ },
944
+ {
945
+ "epoch": 1.0374414976599065,
946
+ "grad_norm": 4.77215576171875,
947
+ "learning_rate": 0.0008520169378203699,
948
+ "loss": 0.2658,
949
+ "step": 1330
950
+ },
951
+ {
952
+ "epoch": 1.045241809672387,
953
+ "grad_norm": 1.4027091264724731,
954
+ "learning_rate": 0.0008509026075328727,
955
+ "loss": 0.3524,
956
+ "step": 1340
957
+ },
958
+ {
959
+ "epoch": 1.0530421216848673,
960
+ "grad_norm": 2.2849514484405518,
961
+ "learning_rate": 0.0008497882772453755,
962
+ "loss": 0.2705,
963
+ "step": 1350
964
+ },
965
+ {
966
+ "epoch": 1.0608424336973479,
967
+ "grad_norm": 1.2896777391433716,
968
+ "learning_rate": 0.0008486739469578784,
969
+ "loss": 0.264,
970
+ "step": 1360
971
+ },
972
+ {
973
+ "epoch": 1.0686427457098284,
974
+ "grad_norm": 2.4552128314971924,
975
+ "learning_rate": 0.0008475596166703812,
976
+ "loss": 0.2833,
977
+ "step": 1370
978
+ },
979
+ {
980
+ "epoch": 1.076443057722309,
981
+ "grad_norm": 2.044693946838379,
982
+ "learning_rate": 0.0008464452863828839,
983
+ "loss": 0.2116,
984
+ "step": 1380
985
+ },
986
+ {
987
+ "epoch": 1.0842433697347893,
988
+ "grad_norm": 1.3727463483810425,
989
+ "learning_rate": 0.0008453309560953867,
990
+ "loss": 0.2533,
991
+ "step": 1390
992
+ },
993
+ {
994
+ "epoch": 1.0920436817472698,
995
+ "grad_norm": 1.6917822360992432,
996
+ "learning_rate": 0.0008442166258078895,
997
+ "loss": 0.4259,
998
+ "step": 1400
999
+ },
1000
+ {
1001
+ "epoch": 1.0998439937597504,
1002
+ "grad_norm": 2.198549747467041,
1003
+ "learning_rate": 0.0008431022955203923,
1004
+ "loss": 0.3161,
1005
+ "step": 1410
1006
+ },
1007
+ {
1008
+ "epoch": 1.107644305772231,
1009
+ "grad_norm": 1.7467869520187378,
1010
+ "learning_rate": 0.000841987965232895,
1011
+ "loss": 0.2377,
1012
+ "step": 1420
1013
+ },
1014
+ {
1015
+ "epoch": 1.1154446177847115,
1016
+ "grad_norm": 2.5347695350646973,
1017
+ "learning_rate": 0.0008408736349453978,
1018
+ "loss": 0.3258,
1019
+ "step": 1430
1020
+ },
1021
+ {
1022
+ "epoch": 1.1232449297971918,
1023
+ "grad_norm": 1.9081774950027466,
1024
+ "learning_rate": 0.0008397593046579006,
1025
+ "loss": 0.2462,
1026
+ "step": 1440
1027
+ },
1028
+ {
1029
+ "epoch": 1.1310452418096724,
1030
+ "grad_norm": 1.5889848470687866,
1031
+ "learning_rate": 0.0008386449743704034,
1032
+ "loss": 0.2404,
1033
+ "step": 1450
1034
+ },
1035
+ {
1036
+ "epoch": 1.138845553822153,
1037
+ "grad_norm": 1.8944768905639648,
1038
+ "learning_rate": 0.0008375306440829062,
1039
+ "loss": 0.2707,
1040
+ "step": 1460
1041
+ },
1042
+ {
1043
+ "epoch": 1.1466458658346335,
1044
+ "grad_norm": 2.5448453426361084,
1045
+ "learning_rate": 0.0008364163137954089,
1046
+ "loss": 0.3342,
1047
+ "step": 1470
1048
+ },
1049
+ {
1050
+ "epoch": 1.154446177847114,
1051
+ "grad_norm": 2.0936005115509033,
1052
+ "learning_rate": 0.0008353019835079117,
1053
+ "loss": 0.385,
1054
+ "step": 1480
1055
+ },
1056
+ {
1057
+ "epoch": 1.1622464898595943,
1058
+ "grad_norm": 2.614129066467285,
1059
+ "learning_rate": 0.0008341876532204145,
1060
+ "loss": 0.2817,
1061
+ "step": 1490
1062
+ },
1063
+ {
1064
+ "epoch": 1.1700468018720749,
1065
+ "grad_norm": 1.6156001091003418,
1066
+ "learning_rate": 0.0008330733229329174,
1067
+ "loss": 0.3527,
1068
+ "step": 1500
1069
+ },
1070
+ {
1071
+ "epoch": 1.1778471138845554,
1072
+ "grad_norm": 1.4294220209121704,
1073
+ "learning_rate": 0.0008319589926454201,
1074
+ "loss": 0.2469,
1075
+ "step": 1510
1076
+ },
1077
+ {
1078
+ "epoch": 1.185647425897036,
1079
+ "grad_norm": 3.197176456451416,
1080
+ "learning_rate": 0.0008308446623579229,
1081
+ "loss": 0.2753,
1082
+ "step": 1520
1083
+ },
1084
+ {
1085
+ "epoch": 1.1934477379095163,
1086
+ "grad_norm": 2.1629223823547363,
1087
+ "learning_rate": 0.0008297303320704257,
1088
+ "loss": 0.3951,
1089
+ "step": 1530
1090
+ },
1091
+ {
1092
+ "epoch": 1.2012480499219969,
1093
+ "grad_norm": 2.9824419021606445,
1094
+ "learning_rate": 0.0008286160017829285,
1095
+ "loss": 0.3278,
1096
+ "step": 1540
1097
+ },
1098
+ {
1099
+ "epoch": 1.2090483619344774,
1100
+ "grad_norm": 2.866138219833374,
1101
+ "learning_rate": 0.0008275016714954313,
1102
+ "loss": 0.4267,
1103
+ "step": 1550
1104
+ },
1105
+ {
1106
+ "epoch": 1.216848673946958,
1107
+ "grad_norm": 2.36781644821167,
1108
+ "learning_rate": 0.000826387341207934,
1109
+ "loss": 0.3414,
1110
+ "step": 1560
1111
+ },
1112
+ {
1113
+ "epoch": 1.2246489859594383,
1114
+ "grad_norm": 1.8305447101593018,
1115
+ "learning_rate": 0.0008252730109204368,
1116
+ "loss": 0.2925,
1117
+ "step": 1570
1118
+ },
1119
+ {
1120
+ "epoch": 1.2324492979719188,
1121
+ "grad_norm": 1.9879776239395142,
1122
+ "learning_rate": 0.0008241586806329396,
1123
+ "loss": 0.357,
1124
+ "step": 1580
1125
+ },
1126
+ {
1127
+ "epoch": 1.2402496099843994,
1128
+ "grad_norm": 2.183350086212158,
1129
+ "learning_rate": 0.0008230443503454424,
1130
+ "loss": 0.3409,
1131
+ "step": 1590
1132
+ },
1133
+ {
1134
+ "epoch": 1.24804992199688,
1135
+ "grad_norm": 2.197072744369507,
1136
+ "learning_rate": 0.0008219300200579451,
1137
+ "loss": 0.33,
1138
+ "step": 1600
1139
+ },
1140
+ {
1141
+ "epoch": 1.2558502340093605,
1142
+ "grad_norm": 3.2065696716308594,
1143
+ "learning_rate": 0.0008208156897704479,
1144
+ "loss": 0.2853,
1145
+ "step": 1610
1146
+ },
1147
+ {
1148
+ "epoch": 1.2636505460218408,
1149
+ "grad_norm": 2.0581350326538086,
1150
+ "learning_rate": 0.0008197013594829507,
1151
+ "loss": 0.3647,
1152
+ "step": 1620
1153
+ },
1154
+ {
1155
+ "epoch": 1.2714508580343213,
1156
+ "grad_norm": 3.149153232574463,
1157
+ "learning_rate": 0.0008185870291954536,
1158
+ "loss": 0.3921,
1159
+ "step": 1630
1160
+ },
1161
+ {
1162
+ "epoch": 1.2792511700468019,
1163
+ "grad_norm": 2.5097105503082275,
1164
+ "learning_rate": 0.0008174726989079563,
1165
+ "loss": 0.3302,
1166
+ "step": 1640
1167
+ },
1168
+ {
1169
+ "epoch": 1.2870514820592824,
1170
+ "grad_norm": 2.7537474632263184,
1171
+ "learning_rate": 0.0008163583686204591,
1172
+ "loss": 0.3286,
1173
+ "step": 1650
1174
+ },
1175
+ {
1176
+ "epoch": 1.294851794071763,
1177
+ "grad_norm": 1.966965675354004,
1178
+ "learning_rate": 0.0008152440383329619,
1179
+ "loss": 0.2785,
1180
+ "step": 1660
1181
+ },
1182
+ {
1183
+ "epoch": 1.3026521060842433,
1184
+ "grad_norm": 1.9159988164901733,
1185
+ "learning_rate": 0.0008141297080454647,
1186
+ "loss": 0.3299,
1187
+ "step": 1670
1188
+ },
1189
+ {
1190
+ "epoch": 1.3104524180967239,
1191
+ "grad_norm": 2.2212252616882324,
1192
+ "learning_rate": 0.0008130153777579675,
1193
+ "loss": 0.2807,
1194
+ "step": 1680
1195
+ },
1196
+ {
1197
+ "epoch": 1.3182527301092044,
1198
+ "grad_norm": 4.194318771362305,
1199
+ "learning_rate": 0.0008119010474704702,
1200
+ "loss": 0.3161,
1201
+ "step": 1690
1202
+ },
1203
+ {
1204
+ "epoch": 1.3260530421216847,
1205
+ "grad_norm": 1.7189604043960571,
1206
+ "learning_rate": 0.000810786717182973,
1207
+ "loss": 0.3356,
1208
+ "step": 1700
1209
+ },
1210
+ {
1211
+ "epoch": 1.3338533541341655,
1212
+ "grad_norm": 1.5196418762207031,
1213
+ "learning_rate": 0.0008096723868954758,
1214
+ "loss": 0.2616,
1215
+ "step": 1710
1216
+ },
1217
+ {
1218
+ "epoch": 1.3416536661466458,
1219
+ "grad_norm": 1.497450351715088,
1220
+ "learning_rate": 0.0008085580566079786,
1221
+ "loss": 0.2946,
1222
+ "step": 1720
1223
+ },
1224
+ {
1225
+ "epoch": 1.3494539781591264,
1226
+ "grad_norm": 1.74885892868042,
1227
+ "learning_rate": 0.0008074437263204813,
1228
+ "loss": 0.2801,
1229
+ "step": 1730
1230
+ },
1231
+ {
1232
+ "epoch": 1.357254290171607,
1233
+ "grad_norm": 2.040701389312744,
1234
+ "learning_rate": 0.0008063293960329841,
1235
+ "loss": 0.3203,
1236
+ "step": 1740
1237
+ },
1238
+ {
1239
+ "epoch": 1.3650546021840873,
1240
+ "grad_norm": 3.760457754135132,
1241
+ "learning_rate": 0.0008052150657454869,
1242
+ "loss": 0.4569,
1243
+ "step": 1750
1244
+ },
1245
+ {
1246
+ "epoch": 1.3728549141965678,
1247
+ "grad_norm": 2.92971134185791,
1248
+ "learning_rate": 0.0008041007354579897,
1249
+ "loss": 0.3321,
1250
+ "step": 1760
1251
+ },
1252
+ {
1253
+ "epoch": 1.3806552262090483,
1254
+ "grad_norm": 1.9461047649383545,
1255
+ "learning_rate": 0.0008029864051704926,
1256
+ "loss": 0.2696,
1257
+ "step": 1770
1258
+ },
1259
+ {
1260
+ "epoch": 1.388455538221529,
1261
+ "grad_norm": 3.2626147270202637,
1262
+ "learning_rate": 0.0008018720748829953,
1263
+ "loss": 0.3322,
1264
+ "step": 1780
1265
+ },
1266
+ {
1267
+ "epoch": 1.3962558502340094,
1268
+ "grad_norm": 2.1270642280578613,
1269
+ "learning_rate": 0.0008007577445954981,
1270
+ "loss": 0.2965,
1271
+ "step": 1790
1272
+ },
1273
+ {
1274
+ "epoch": 1.4040561622464898,
1275
+ "grad_norm": 2.3174221515655518,
1276
+ "learning_rate": 0.0007996434143080009,
1277
+ "loss": 0.3425,
1278
+ "step": 1800
1279
+ },
1280
+ {
1281
+ "epoch": 1.4118564742589703,
1282
+ "grad_norm": 2.5749576091766357,
1283
+ "learning_rate": 0.0007985290840205037,
1284
+ "loss": 0.3622,
1285
+ "step": 1810
1286
+ },
1287
+ {
1288
+ "epoch": 1.4196567862714509,
1289
+ "grad_norm": 1.873813509941101,
1290
+ "learning_rate": 0.0007974147537330064,
1291
+ "loss": 0.2497,
1292
+ "step": 1820
1293
+ },
1294
+ {
1295
+ "epoch": 1.4274570982839314,
1296
+ "grad_norm": 3.633928060531616,
1297
+ "learning_rate": 0.0007963004234455092,
1298
+ "loss": 0.4058,
1299
+ "step": 1830
1300
+ },
1301
+ {
1302
+ "epoch": 1.435257410296412,
1303
+ "grad_norm": 2.356269598007202,
1304
+ "learning_rate": 0.000795186093158012,
1305
+ "loss": 0.2635,
1306
+ "step": 1840
1307
+ },
1308
+ {
1309
+ "epoch": 1.4430577223088923,
1310
+ "grad_norm": 1.9108752012252808,
1311
+ "learning_rate": 0.0007940717628705148,
1312
+ "loss": 0.336,
1313
+ "step": 1850
1314
+ },
1315
+ {
1316
+ "epoch": 1.4508580343213728,
1317
+ "grad_norm": 1.5505330562591553,
1318
+ "learning_rate": 0.0007929574325830176,
1319
+ "loss": 0.3493,
1320
+ "step": 1860
1321
+ },
1322
+ {
1323
+ "epoch": 1.4586583463338534,
1324
+ "grad_norm": 1.9970422983169556,
1325
+ "learning_rate": 0.0007918431022955203,
1326
+ "loss": 0.273,
1327
+ "step": 1870
1328
+ },
1329
+ {
1330
+ "epoch": 1.466458658346334,
1331
+ "grad_norm": 2.753758192062378,
1332
+ "learning_rate": 0.0007907287720080231,
1333
+ "loss": 0.2845,
1334
+ "step": 1880
1335
+ },
1336
+ {
1337
+ "epoch": 1.4742589703588145,
1338
+ "grad_norm": NaN,
1339
+ "learning_rate": 0.0007897258747492757,
1340
+ "loss": 0.2544,
1341
+ "step": 1890
1342
+ },
1343
+ {
1344
+ "epoch": 1.4820592823712948,
1345
+ "grad_norm": 3.0995099544525146,
1346
+ "learning_rate": 0.0007886115444617785,
1347
+ "loss": 0.2884,
1348
+ "step": 1900
1349
+ },
1350
+ {
1351
+ "epoch": 1.4898595943837754,
1352
+ "grad_norm": 5.728559970855713,
1353
+ "learning_rate": 0.0007874972141742812,
1354
+ "loss": 0.2681,
1355
+ "step": 1910
1356
+ },
1357
+ {
1358
+ "epoch": 1.497659906396256,
1359
+ "grad_norm": 1.492622971534729,
1360
+ "learning_rate": 0.000786382883886784,
1361
+ "loss": 0.2891,
1362
+ "step": 1920
1363
+ },
1364
+ {
1365
+ "epoch": 1.5054602184087362,
1366
+ "grad_norm": 1.7419252395629883,
1367
+ "learning_rate": 0.0007852685535992868,
1368
+ "loss": 0.4089,
1369
+ "step": 1930
1370
+ },
1371
+ {
1372
+ "epoch": 1.513260530421217,
1373
+ "grad_norm": 6.814690589904785,
1374
+ "learning_rate": 0.0007841542233117896,
1375
+ "loss": 0.3372,
1376
+ "step": 1940
1377
+ },
1378
+ {
1379
+ "epoch": 1.5210608424336973,
1380
+ "grad_norm": 2.380725860595703,
1381
+ "learning_rate": 0.0007830398930242924,
1382
+ "loss": 0.3189,
1383
+ "step": 1950
1384
+ },
1385
+ {
1386
+ "epoch": 1.5288611544461779,
1387
+ "grad_norm": 5.004116058349609,
1388
+ "learning_rate": 0.0007819255627367951,
1389
+ "loss": 0.3018,
1390
+ "step": 1960
1391
+ },
1392
+ {
1393
+ "epoch": 1.5366614664586584,
1394
+ "grad_norm": 2.604365825653076,
1395
+ "learning_rate": 0.0007808112324492979,
1396
+ "loss": 0.3054,
1397
+ "step": 1970
1398
+ },
1399
+ {
1400
+ "epoch": 1.5444617784711387,
1401
+ "grad_norm": 1.585584044456482,
1402
+ "learning_rate": 0.0007796969021618007,
1403
+ "loss": 0.3477,
1404
+ "step": 1980
1405
+ },
1406
+ {
1407
+ "epoch": 1.5522620904836193,
1408
+ "grad_norm": 1.8678693771362305,
1409
+ "learning_rate": 0.0007785825718743035,
1410
+ "loss": 0.3577,
1411
+ "step": 1990
1412
+ },
1413
+ {
1414
+ "epoch": 1.5600624024960998,
1415
+ "grad_norm": 1.654689073562622,
1416
+ "learning_rate": 0.0007774682415868062,
1417
+ "loss": 0.2625,
1418
+ "step": 2000
1419
+ },
1420
+ {
1421
+ "epoch": 1.5678627145085804,
1422
+ "grad_norm": 2.108919858932495,
1423
+ "learning_rate": 0.0007763539112993092,
1424
+ "loss": 0.2497,
1425
+ "step": 2010
1426
+ },
1427
+ {
1428
+ "epoch": 1.575663026521061,
1429
+ "grad_norm": 7.198604106903076,
1430
+ "learning_rate": 0.000775239581011812,
1431
+ "loss": 0.3382,
1432
+ "step": 2020
1433
+ },
1434
+ {
1435
+ "epoch": 1.5834633385335413,
1436
+ "grad_norm": 2.2285892963409424,
1437
+ "learning_rate": 0.0007741252507243148,
1438
+ "loss": 0.2598,
1439
+ "step": 2030
1440
+ },
1441
+ {
1442
+ "epoch": 1.5912636505460218,
1443
+ "grad_norm": 1.7743014097213745,
1444
+ "learning_rate": 0.0007730109204368176,
1445
+ "loss": 0.2757,
1446
+ "step": 2040
1447
+ },
1448
+ {
1449
+ "epoch": 1.5990639625585024,
1450
+ "grad_norm": 1.7763789892196655,
1451
+ "learning_rate": 0.0007718965901493203,
1452
+ "loss": 0.2703,
1453
+ "step": 2050
1454
+ },
1455
+ {
1456
+ "epoch": 1.6068642745709827,
1457
+ "grad_norm": 2.159956693649292,
1458
+ "learning_rate": 0.000770782259861823,
1459
+ "loss": 0.2824,
1460
+ "step": 2060
1461
+ },
1462
+ {
1463
+ "epoch": 1.6146645865834635,
1464
+ "grad_norm": 1.4845560789108276,
1465
+ "learning_rate": 0.0007696679295743259,
1466
+ "loss": 0.2528,
1467
+ "step": 2070
1468
+ },
1469
+ {
1470
+ "epoch": 1.6224648985959438,
1471
+ "grad_norm": 3.627887010574341,
1472
+ "learning_rate": 0.0007685535992868287,
1473
+ "loss": 0.3197,
1474
+ "step": 2080
1475
+ },
1476
+ {
1477
+ "epoch": 1.6302652106084243,
1478
+ "grad_norm": 2.2174973487854004,
1479
+ "learning_rate": 0.0007674392689993314,
1480
+ "loss": 0.2994,
1481
+ "step": 2090
1482
+ },
1483
+ {
1484
+ "epoch": 1.6380655226209049,
1485
+ "grad_norm": 2.5977325439453125,
1486
+ "learning_rate": 0.0007663249387118342,
1487
+ "loss": 0.2991,
1488
+ "step": 2100
1489
+ },
1490
+ {
1491
+ "epoch": 1.6458658346333852,
1492
+ "grad_norm": 1.9066824913024902,
1493
+ "learning_rate": 0.000765210608424337,
1494
+ "loss": 0.2166,
1495
+ "step": 2110
1496
+ },
1497
+ {
1498
+ "epoch": 1.653666146645866,
1499
+ "grad_norm": 1.7197297811508179,
1500
+ "learning_rate": 0.0007640962781368398,
1501
+ "loss": 0.2948,
1502
+ "step": 2120
1503
+ },
1504
+ {
1505
+ "epoch": 1.6614664586583463,
1506
+ "grad_norm": 2.054304361343384,
1507
+ "learning_rate": 0.0007629819478493426,
1508
+ "loss": 0.3073,
1509
+ "step": 2130
1510
+ },
1511
+ {
1512
+ "epoch": 1.6692667706708268,
1513
+ "grad_norm": 1.7934963703155518,
1514
+ "learning_rate": 0.0007618676175618453,
1515
+ "loss": 0.2667,
1516
+ "step": 2140
1517
+ },
1518
+ {
1519
+ "epoch": 1.6770670826833074,
1520
+ "grad_norm": 2.5259838104248047,
1521
+ "learning_rate": 0.0007607532872743482,
1522
+ "loss": 0.3322,
1523
+ "step": 2150
1524
+ },
1525
+ {
1526
+ "epoch": 1.6848673946957877,
1527
+ "grad_norm": 3.6354122161865234,
1528
+ "learning_rate": 0.000759638956986851,
1529
+ "loss": 0.3909,
1530
+ "step": 2160
1531
+ },
1532
+ {
1533
+ "epoch": 1.6926677067082685,
1534
+ "grad_norm": 1.6722809076309204,
1535
+ "learning_rate": 0.0007585246266993538,
1536
+ "loss": 0.2987,
1537
+ "step": 2170
1538
+ },
1539
+ {
1540
+ "epoch": 1.7004680187207488,
1541
+ "grad_norm": 4.3235015869140625,
1542
+ "learning_rate": 0.0007574102964118565,
1543
+ "loss": 0.3112,
1544
+ "step": 2180
1545
+ },
1546
+ {
1547
+ "epoch": 1.7082683307332294,
1548
+ "grad_norm": 2.236316442489624,
1549
+ "learning_rate": 0.0007562959661243593,
1550
+ "loss": 0.3174,
1551
+ "step": 2190
1552
+ },
1553
+ {
1554
+ "epoch": 1.71606864274571,
1555
+ "grad_norm": 21.32891273498535,
1556
+ "learning_rate": 0.0007551816358368621,
1557
+ "loss": 0.3696,
1558
+ "step": 2200
1559
+ },
1560
+ {
1561
+ "epoch": 1.7238689547581902,
1562
+ "grad_norm": 2.4251410961151123,
1563
+ "learning_rate": 0.0007540673055493649,
1564
+ "loss": 0.3171,
1565
+ "step": 2210
1566
+ },
1567
+ {
1568
+ "epoch": 1.7316692667706708,
1569
+ "grad_norm": 2.4152424335479736,
1570
+ "learning_rate": 0.0007529529752618677,
1571
+ "loss": 0.328,
1572
+ "step": 2220
1573
+ },
1574
+ {
1575
+ "epoch": 1.7394695787831513,
1576
+ "grad_norm": 2.0988574028015137,
1577
+ "learning_rate": 0.0007518386449743704,
1578
+ "loss": 0.3061,
1579
+ "step": 2230
1580
+ },
1581
+ {
1582
+ "epoch": 1.7472698907956317,
1583
+ "grad_norm": 4.469291687011719,
1584
+ "learning_rate": 0.0007507243146868732,
1585
+ "loss": 0.3315,
1586
+ "step": 2240
1587
+ },
1588
+ {
1589
+ "epoch": 1.7550702028081124,
1590
+ "grad_norm": 2.4917778968811035,
1591
+ "learning_rate": 0.000749609984399376,
1592
+ "loss": 0.4296,
1593
+ "step": 2250
1594
+ },
1595
+ {
1596
+ "epoch": 1.7628705148205928,
1597
+ "grad_norm": 3.073840379714966,
1598
+ "learning_rate": 0.0007484956541118788,
1599
+ "loss": 0.3685,
1600
+ "step": 2260
1601
+ },
1602
+ {
1603
+ "epoch": 1.7706708268330733,
1604
+ "grad_norm": 2.205733299255371,
1605
+ "learning_rate": 0.0007473813238243815,
1606
+ "loss": 0.2691,
1607
+ "step": 2270
1608
+ },
1609
+ {
1610
+ "epoch": 1.7784711388455539,
1611
+ "grad_norm": 2.3948941230773926,
1612
+ "learning_rate": 0.0007462669935368844,
1613
+ "loss": 0.3065,
1614
+ "step": 2280
1615
+ },
1616
+ {
1617
+ "epoch": 1.7862714508580342,
1618
+ "grad_norm": 2.6060824394226074,
1619
+ "learning_rate": 0.0007451526632493872,
1620
+ "loss": 0.3354,
1621
+ "step": 2290
1622
+ },
1623
+ {
1624
+ "epoch": 1.794071762870515,
1625
+ "grad_norm": 3.2586774826049805,
1626
+ "learning_rate": 0.00074403833296189,
1627
+ "loss": 0.261,
1628
+ "step": 2300
1629
+ },
1630
+ {
1631
+ "epoch": 1.8018720748829953,
1632
+ "grad_norm": 1.6417285203933716,
1633
+ "learning_rate": 0.0007429240026743928,
1634
+ "loss": 0.3828,
1635
+ "step": 2310
1636
+ },
1637
+ {
1638
+ "epoch": 1.8096723868954758,
1639
+ "grad_norm": 4.006927967071533,
1640
+ "learning_rate": 0.0007418096723868955,
1641
+ "loss": 0.4228,
1642
+ "step": 2320
1643
+ },
1644
+ {
1645
+ "epoch": 1.8174726989079564,
1646
+ "grad_norm": 2.5880374908447266,
1647
+ "learning_rate": 0.0007406953420993983,
1648
+ "loss": 0.2766,
1649
+ "step": 2330
1650
+ },
1651
+ {
1652
+ "epoch": 1.8252730109204367,
1653
+ "grad_norm": 1.602337121963501,
1654
+ "learning_rate": 0.0007395810118119011,
1655
+ "loss": 0.2794,
1656
+ "step": 2340
1657
+ },
1658
+ {
1659
+ "epoch": 1.8330733229329175,
1660
+ "grad_norm": 5.932153224945068,
1661
+ "learning_rate": 0.0007384666815244039,
1662
+ "loss": 0.3471,
1663
+ "step": 2350
1664
+ },
1665
+ {
1666
+ "epoch": 1.8408736349453978,
1667
+ "grad_norm": 4.076808452606201,
1668
+ "learning_rate": 0.0007373523512369066,
1669
+ "loss": 0.2649,
1670
+ "step": 2360
1671
+ },
1672
+ {
1673
+ "epoch": 1.8486739469578783,
1674
+ "grad_norm": 4.666397571563721,
1675
+ "learning_rate": 0.0007362380209494094,
1676
+ "loss": 0.2751,
1677
+ "step": 2370
1678
+ },
1679
+ {
1680
+ "epoch": 1.856474258970359,
1681
+ "grad_norm": 3.792745590209961,
1682
+ "learning_rate": 0.0007351236906619122,
1683
+ "loss": 0.2606,
1684
+ "step": 2380
1685
+ },
1686
+ {
1687
+ "epoch": 1.8642745709828392,
1688
+ "grad_norm": 2.5275423526763916,
1689
+ "learning_rate": 0.000734009360374415,
1690
+ "loss": 0.3469,
1691
+ "step": 2390
1692
+ },
1693
+ {
1694
+ "epoch": 1.8720748829953198,
1695
+ "grad_norm": 1.59649658203125,
1696
+ "learning_rate": 0.0007328950300869178,
1697
+ "loss": 0.2724,
1698
+ "step": 2400
1699
+ },
1700
+ {
1701
+ "epoch": 1.8798751950078003,
1702
+ "grad_norm": 3.7428267002105713,
1703
+ "learning_rate": 0.0007317806997994206,
1704
+ "loss": 0.4426,
1705
+ "step": 2410
1706
+ },
1707
+ {
1708
+ "epoch": 1.8876755070202809,
1709
+ "grad_norm": 3.7439956665039062,
1710
+ "learning_rate": 0.0007306663695119234,
1711
+ "loss": 0.2901,
1712
+ "step": 2420
1713
+ },
1714
+ {
1715
+ "epoch": 1.8954758190327614,
1716
+ "grad_norm": 2.3777198791503906,
1717
+ "learning_rate": 0.0007295520392244262,
1718
+ "loss": 0.2837,
1719
+ "step": 2430
1720
+ },
1721
+ {
1722
+ "epoch": 1.9032761310452417,
1723
+ "grad_norm": 2.7654988765716553,
1724
+ "learning_rate": 0.000728437708936929,
1725
+ "loss": 0.277,
1726
+ "step": 2440
1727
+ },
1728
+ {
1729
+ "epoch": 1.9110764430577223,
1730
+ "grad_norm": 1.8758680820465088,
1731
+ "learning_rate": 0.0007273233786494317,
1732
+ "loss": 0.2706,
1733
+ "step": 2450
1734
+ },
1735
+ {
1736
+ "epoch": 1.9188767550702028,
1737
+ "grad_norm": 2.8725340366363525,
1738
+ "learning_rate": 0.0007262090483619345,
1739
+ "loss": 0.2566,
1740
+ "step": 2460
1741
+ },
1742
+ {
1743
+ "epoch": 1.9266770670826832,
1744
+ "grad_norm": 2.4021458625793457,
1745
+ "learning_rate": 0.0007250947180744373,
1746
+ "loss": 0.2645,
1747
+ "step": 2470
1748
+ },
1749
+ {
1750
+ "epoch": 1.934477379095164,
1751
+ "grad_norm": 2.8407838344573975,
1752
+ "learning_rate": 0.0007239803877869401,
1753
+ "loss": 0.3152,
1754
+ "step": 2480
1755
+ },
1756
+ {
1757
+ "epoch": 1.9422776911076443,
1758
+ "grad_norm": 3.606403112411499,
1759
+ "learning_rate": 0.0007228660574994429,
1760
+ "loss": 0.373,
1761
+ "step": 2490
1762
+ },
1763
+ {
1764
+ "epoch": 1.9500780031201248,
1765
+ "grad_norm": 2.362473487854004,
1766
+ "learning_rate": 0.0007217517272119456,
1767
+ "loss": 0.4332,
1768
+ "step": 2500
1769
+ },
1770
+ {
1771
+ "epoch": 1.9578783151326054,
1772
+ "grad_norm": 1.9711815118789673,
1773
+ "learning_rate": 0.0007206373969244484,
1774
+ "loss": 0.2606,
1775
+ "step": 2510
1776
+ },
1777
+ {
1778
+ "epoch": 1.9656786271450857,
1779
+ "grad_norm": 2.683908224105835,
1780
+ "learning_rate": 0.0007195230666369512,
1781
+ "loss": 0.3582,
1782
+ "step": 2520
1783
+ },
1784
+ {
1785
+ "epoch": 1.9734789391575664,
1786
+ "grad_norm": 2.5902493000030518,
1787
+ "learning_rate": 0.000718408736349454,
1788
+ "loss": 0.2694,
1789
+ "step": 2530
1790
+ },
1791
+ {
1792
+ "epoch": 1.9812792511700468,
1793
+ "grad_norm": 3.92708420753479,
1794
+ "learning_rate": 0.0007172944060619567,
1795
+ "loss": 0.3083,
1796
+ "step": 2540
1797
+ },
1798
+ {
1799
+ "epoch": 1.9890795631825273,
1800
+ "grad_norm": 2.6788370609283447,
1801
+ "learning_rate": 0.0007161800757744596,
1802
+ "loss": 0.2587,
1803
+ "step": 2550
1804
+ },
1805
+ {
1806
+ "epoch": 1.9968798751950079,
1807
+ "grad_norm": 2.413313627243042,
1808
+ "learning_rate": 0.0007150657454869624,
1809
+ "loss": 0.2732,
1810
+ "step": 2560
1811
+ },
1812
+ {
1813
+ "epoch": 2.0,
1814
+ "eval_loss": 0.3617618680000305,
1815
+ "eval_runtime": 36952.264,
1816
+ "eval_samples_per_second": 0.015,
1817
+ "eval_steps_per_second": 0.015,
1818
+ "eval_wer": 22.793975670978952,
1819
+ "step": 2564
1820
+ },
1821
+ {
1822
+ "epoch": 2.004680187207488,
1823
+ "grad_norm": 1.572451114654541,
1824
+ "learning_rate": 0.0007139514151994652,
1825
+ "loss": 0.2147,
1826
+ "step": 2570
1827
+ },
1828
+ {
1829
+ "epoch": 2.012480499219969,
1830
+ "grad_norm": 2.4759023189544678,
1831
+ "learning_rate": 0.000712837084911968,
1832
+ "loss": 0.2015,
1833
+ "step": 2580
1834
+ },
1835
+ {
1836
+ "epoch": 2.0202808112324493,
1837
+ "grad_norm": 1.6903563737869263,
1838
+ "learning_rate": 0.0007117227546244707,
1839
+ "loss": 0.1703,
1840
+ "step": 2590
1841
+ },
1842
+ {
1843
+ "epoch": 2.0280811232449296,
1844
+ "grad_norm": 3.494985580444336,
1845
+ "learning_rate": 0.0007106084243369735,
1846
+ "loss": 0.2063,
1847
+ "step": 2600
1848
+ },
1849
+ {
1850
+ "epoch": 2.0358814352574104,
1851
+ "grad_norm": 1.5024439096450806,
1852
+ "learning_rate": 0.0007094940940494763,
1853
+ "loss": 0.1807,
1854
+ "step": 2610
1855
+ },
1856
+ {
1857
+ "epoch": 2.0436817472698907,
1858
+ "grad_norm": 1.9423105716705322,
1859
+ "learning_rate": 0.0007083797637619791,
1860
+ "loss": 0.1953,
1861
+ "step": 2620
1862
+ },
1863
+ {
1864
+ "epoch": 2.0514820592823715,
1865
+ "grad_norm": 0.8572360277175903,
1866
+ "learning_rate": 0.0007072654334744818,
1867
+ "loss": 0.3423,
1868
+ "step": 2630
1869
+ },
1870
+ {
1871
+ "epoch": 2.059282371294852,
1872
+ "grad_norm": 2.574855327606201,
1873
+ "learning_rate": 0.0007061511031869846,
1874
+ "loss": 0.1916,
1875
+ "step": 2640
1876
+ },
1877
+ {
1878
+ "epoch": 2.067082683307332,
1879
+ "grad_norm": 2.2941219806671143,
1880
+ "learning_rate": 0.0007050367728994874,
1881
+ "loss": 0.2168,
1882
+ "step": 2650
1883
+ },
1884
+ {
1885
+ "epoch": 2.074882995319813,
1886
+ "grad_norm": 2.0448150634765625,
1887
+ "learning_rate": 0.0007039224426119902,
1888
+ "loss": 0.2412,
1889
+ "step": 2660
1890
+ },
1891
+ {
1892
+ "epoch": 2.0826833073322932,
1893
+ "grad_norm": 1.8044381141662598,
1894
+ "learning_rate": 0.000702808112324493,
1895
+ "loss": 0.3261,
1896
+ "step": 2670
1897
+ },
1898
+ {
1899
+ "epoch": 2.090483619344774,
1900
+ "grad_norm": 2.752220630645752,
1901
+ "learning_rate": 0.0007016937820369958,
1902
+ "loss": 0.2007,
1903
+ "step": 2680
1904
+ },
1905
+ {
1906
+ "epoch": 2.0982839313572543,
1907
+ "grad_norm": 1.4598050117492676,
1908
+ "learning_rate": 0.0007005794517494986,
1909
+ "loss": 0.1856,
1910
+ "step": 2690
1911
+ },
1912
+ {
1913
+ "epoch": 2.1060842433697347,
1914
+ "grad_norm": 3.578192710876465,
1915
+ "learning_rate": 0.0006994651214620014,
1916
+ "loss": 0.1991,
1917
+ "step": 2700
1918
+ },
1919
+ {
1920
+ "epoch": 2.1138845553822154,
1921
+ "grad_norm": 2.6971054077148438,
1922
+ "learning_rate": 0.0006983507911745042,
1923
+ "loss": 0.2134,
1924
+ "step": 2710
1925
+ },
1926
+ {
1927
+ "epoch": 2.1216848673946958,
1928
+ "grad_norm": 2.437596559524536,
1929
+ "learning_rate": 0.0006972364608870069,
1930
+ "loss": 0.228,
1931
+ "step": 2720
1932
+ },
1933
+ {
1934
+ "epoch": 2.129485179407176,
1935
+ "grad_norm": 2.6254658699035645,
1936
+ "learning_rate": 0.0006961221305995097,
1937
+ "loss": 0.1671,
1938
+ "step": 2730
1939
+ },
1940
+ {
1941
+ "epoch": 2.137285491419657,
1942
+ "grad_norm": 1.3765720129013062,
1943
+ "learning_rate": 0.0006950078003120125,
1944
+ "loss": 0.2391,
1945
+ "step": 2740
1946
+ },
1947
+ {
1948
+ "epoch": 2.145085803432137,
1949
+ "grad_norm": 2.192396879196167,
1950
+ "learning_rate": 0.0006938934700245153,
1951
+ "loss": 0.2331,
1952
+ "step": 2750
1953
+ },
1954
+ {
1955
+ "epoch": 2.152886115444618,
1956
+ "grad_norm": 1.4418809413909912,
1957
+ "learning_rate": 0.0006927791397370181,
1958
+ "loss": 0.2041,
1959
+ "step": 2760
1960
+ },
1961
+ {
1962
+ "epoch": 2.1606864274570983,
1963
+ "grad_norm": 2.553459882736206,
1964
+ "learning_rate": 0.0006916648094495208,
1965
+ "loss": 0.2342,
1966
+ "step": 2770
1967
+ },
1968
+ {
1969
+ "epoch": 2.1684867394695786,
1970
+ "grad_norm": 1.7199114561080933,
1971
+ "learning_rate": 0.0006905504791620236,
1972
+ "loss": 0.1841,
1973
+ "step": 2780
1974
+ },
1975
+ {
1976
+ "epoch": 2.1762870514820594,
1977
+ "grad_norm": 2.2145979404449463,
1978
+ "learning_rate": 0.0006894361488745264,
1979
+ "loss": 0.1821,
1980
+ "step": 2790
1981
+ },
1982
+ {
1983
+ "epoch": 2.1840873634945397,
1984
+ "grad_norm": 2.434779405593872,
1985
+ "learning_rate": 0.0006883218185870292,
1986
+ "loss": 0.2115,
1987
+ "step": 2800
1988
+ },
1989
+ {
1990
+ "epoch": 2.1918876755070205,
1991
+ "grad_norm": 1.0518474578857422,
1992
+ "learning_rate": 0.0006872074882995319,
1993
+ "loss": 0.2186,
1994
+ "step": 2810
1995
+ },
1996
+ {
1997
+ "epoch": 2.199687987519501,
1998
+ "grad_norm": 1.9856785535812378,
1999
+ "learning_rate": 0.0006860931580120348,
2000
+ "loss": 0.2448,
2001
+ "step": 2820
2002
+ },
2003
+ {
2004
+ "epoch": 2.207488299531981,
2005
+ "grad_norm": 17.3148136138916,
2006
+ "learning_rate": 0.0006849788277245376,
2007
+ "loss": 0.2372,
2008
+ "step": 2830
2009
+ },
2010
+ {
2011
+ "epoch": 2.215288611544462,
2012
+ "grad_norm": 3.4590959548950195,
2013
+ "learning_rate": 0.0006838644974370404,
2014
+ "loss": 0.3179,
2015
+ "step": 2840
2016
+ },
2017
+ {
2018
+ "epoch": 2.223088923556942,
2019
+ "grad_norm": 2.127650260925293,
2020
+ "learning_rate": 0.0006827501671495432,
2021
+ "loss": 0.2445,
2022
+ "step": 2850
2023
+ },
2024
+ {
2025
+ "epoch": 2.230889235569423,
2026
+ "grad_norm": 1.895729660987854,
2027
+ "learning_rate": 0.0006816358368620459,
2028
+ "loss": 0.1966,
2029
+ "step": 2860
2030
+ },
2031
+ {
2032
+ "epoch": 2.2386895475819033,
2033
+ "grad_norm": 1.4693467617034912,
2034
+ "learning_rate": 0.0006805215065745487,
2035
+ "loss": 0.2351,
2036
+ "step": 2870
2037
+ },
2038
+ {
2039
+ "epoch": 2.2464898595943836,
2040
+ "grad_norm": 1.500453233718872,
2041
+ "learning_rate": 0.0006794071762870515,
2042
+ "loss": 0.1946,
2043
+ "step": 2880
2044
+ },
2045
+ {
2046
+ "epoch": 2.2542901716068644,
2047
+ "grad_norm": 2.8631374835968018,
2048
+ "learning_rate": 0.0006782928459995543,
2049
+ "loss": 0.2367,
2050
+ "step": 2890
2051
+ },
2052
+ {
2053
+ "epoch": 2.2620904836193447,
2054
+ "grad_norm": 1.5281766653060913,
2055
+ "learning_rate": 0.000677178515712057,
2056
+ "loss": 0.1855,
2057
+ "step": 2900
2058
+ },
2059
+ {
2060
+ "epoch": 2.2698907956318255,
2061
+ "grad_norm": 2.3027195930480957,
2062
+ "learning_rate": 0.0006760641854245598,
2063
+ "loss": 0.2117,
2064
+ "step": 2910
2065
+ },
2066
+ {
2067
+ "epoch": 2.277691107644306,
2068
+ "grad_norm": 2.9962668418884277,
2069
+ "learning_rate": 0.0006749498551370626,
2070
+ "loss": 0.2441,
2071
+ "step": 2920
2072
+ },
2073
+ {
2074
+ "epoch": 2.285491419656786,
2075
+ "grad_norm": 2.489192008972168,
2076
+ "learning_rate": 0.0006738355248495654,
2077
+ "loss": 0.2212,
2078
+ "step": 2930
2079
+ },
2080
+ {
2081
+ "epoch": 2.293291731669267,
2082
+ "grad_norm": 1.366945743560791,
2083
+ "learning_rate": 0.0006727211945620682,
2084
+ "loss": 0.2003,
2085
+ "step": 2940
2086
+ },
2087
+ {
2088
+ "epoch": 2.3010920436817472,
2089
+ "grad_norm": 1.4768056869506836,
2090
+ "learning_rate": 0.000671606864274571,
2091
+ "loss": 0.3107,
2092
+ "step": 2950
2093
+ },
2094
+ {
2095
+ "epoch": 2.308892355694228,
2096
+ "grad_norm": 1.797979474067688,
2097
+ "learning_rate": 0.0006704925339870738,
2098
+ "loss": 0.1978,
2099
+ "step": 2960
2100
+ },
2101
+ {
2102
+ "epoch": 2.3166926677067083,
2103
+ "grad_norm": 1.9439573287963867,
2104
+ "learning_rate": 0.0006693782036995766,
2105
+ "loss": 0.2306,
2106
+ "step": 2970
2107
+ },
2108
+ {
2109
+ "epoch": 2.3244929797191887,
2110
+ "grad_norm": 1.582478642463684,
2111
+ "learning_rate": 0.0006682638734120794,
2112
+ "loss": 0.2079,
2113
+ "step": 2980
2114
+ },
2115
+ {
2116
+ "epoch": 2.3322932917316694,
2117
+ "grad_norm": 2.1245157718658447,
2118
+ "learning_rate": 0.0006671495431245821,
2119
+ "loss": 0.2258,
2120
+ "step": 2990
2121
+ },
2122
+ {
2123
+ "epoch": 2.3400936037441498,
2124
+ "grad_norm": 2.427675724029541,
2125
+ "learning_rate": 0.0006660352128370849,
2126
+ "loss": 0.2846,
2127
+ "step": 3000
2128
+ },
2129
+ {
2130
+ "epoch": 2.34789391575663,
2131
+ "grad_norm": 0.9095527529716492,
2132
+ "learning_rate": 0.0006649208825495877,
2133
+ "loss": 0.1746,
2134
+ "step": 3010
2135
+ },
2136
+ {
2137
+ "epoch": 2.355694227769111,
2138
+ "grad_norm": 2.0468294620513916,
2139
+ "learning_rate": 0.0006638065522620905,
2140
+ "loss": 0.2645,
2141
+ "step": 3020
2142
+ },
2143
+ {
2144
+ "epoch": 2.363494539781591,
2145
+ "grad_norm": 1.5703836679458618,
2146
+ "learning_rate": 0.0006626922219745933,
2147
+ "loss": 0.1896,
2148
+ "step": 3030
2149
+ },
2150
+ {
2151
+ "epoch": 2.371294851794072,
2152
+ "grad_norm": 2.37263822555542,
2153
+ "learning_rate": 0.000661577891687096,
2154
+ "loss": 0.232,
2155
+ "step": 3040
2156
+ },
2157
+ {
2158
+ "epoch": 2.3790951638065523,
2159
+ "grad_norm": 1.6041433811187744,
2160
+ "learning_rate": 0.0006604635613995988,
2161
+ "loss": 0.2135,
2162
+ "step": 3050
2163
+ },
2164
+ {
2165
+ "epoch": 2.3868954758190326,
2166
+ "grad_norm": 1.87883722782135,
2167
+ "learning_rate": 0.0006593492311121016,
2168
+ "loss": 0.1993,
2169
+ "step": 3060
2170
+ },
2171
+ {
2172
+ "epoch": 2.3946957878315134,
2173
+ "grad_norm": 2.5502099990844727,
2174
+ "learning_rate": 0.0006582349008246044,
2175
+ "loss": 0.2468,
2176
+ "step": 3070
2177
+ },
2178
+ {
2179
+ "epoch": 2.4024960998439937,
2180
+ "grad_norm": 2.681384801864624,
2181
+ "learning_rate": 0.0006571205705371071,
2182
+ "loss": 0.2364,
2183
+ "step": 3080
2184
+ },
2185
+ {
2186
+ "epoch": 2.410296411856474,
2187
+ "grad_norm": 1.2032707929611206,
2188
+ "learning_rate": 0.00065600624024961,
2189
+ "loss": 0.2732,
2190
+ "step": 3090
2191
+ },
2192
+ {
2193
+ "epoch": 2.418096723868955,
2194
+ "grad_norm": 1.553661584854126,
2195
+ "learning_rate": 0.0006548919099621128,
2196
+ "loss": 0.2214,
2197
+ "step": 3100
2198
+ },
2199
+ {
2200
+ "epoch": 2.425897035881435,
2201
+ "grad_norm": 0.9736389517784119,
2202
+ "learning_rate": 0.0006537775796746156,
2203
+ "loss": 0.1778,
2204
+ "step": 3110
2205
+ },
2206
+ {
2207
+ "epoch": 2.433697347893916,
2208
+ "grad_norm": 1.911352276802063,
2209
+ "learning_rate": 0.0006526632493871184,
2210
+ "loss": 0.2062,
2211
+ "step": 3120
2212
+ },
2213
+ {
2214
+ "epoch": 2.4414976599063962,
2215
+ "grad_norm": 1.4338595867156982,
2216
+ "learning_rate": 0.0006515489190996211,
2217
+ "loss": 0.193,
2218
+ "step": 3130
2219
+ },
2220
+ {
2221
+ "epoch": 2.4492979719188765,
2222
+ "grad_norm": 1.3027153015136719,
2223
+ "learning_rate": 0.0006504345888121239,
2224
+ "loss": 0.3175,
2225
+ "step": 3140
2226
+ },
2227
+ {
2228
+ "epoch": 2.4570982839313573,
2229
+ "grad_norm": 2.262709140777588,
2230
+ "learning_rate": 0.0006493202585246267,
2231
+ "loss": 0.2874,
2232
+ "step": 3150
2233
+ },
2234
+ {
2235
+ "epoch": 2.4648985959438376,
2236
+ "grad_norm": 1.36016845703125,
2237
+ "learning_rate": 0.0006482059282371295,
2238
+ "loss": 0.1603,
2239
+ "step": 3160
2240
+ },
2241
+ {
2242
+ "epoch": 2.4726989079563184,
2243
+ "grad_norm": 3.441779613494873,
2244
+ "learning_rate": 0.0006470915979496322,
2245
+ "loss": 0.4564,
2246
+ "step": 3170
2247
+ },
2248
+ {
2249
+ "epoch": 2.4804992199687987,
2250
+ "grad_norm": 1.8022549152374268,
2251
+ "learning_rate": 0.000645977267662135,
2252
+ "loss": 0.1928,
2253
+ "step": 3180
2254
+ },
2255
+ {
2256
+ "epoch": 2.488299531981279,
2257
+ "grad_norm": 2.104497194290161,
2258
+ "learning_rate": 0.0006448629373746378,
2259
+ "loss": 0.2047,
2260
+ "step": 3190
2261
+ },
2262
+ {
2263
+ "epoch": 2.49609984399376,
2264
+ "grad_norm": 2.5888454914093018,
2265
+ "learning_rate": 0.0006437486070871406,
2266
+ "loss": 0.2591,
2267
+ "step": 3200
2268
+ },
2269
+ {
2270
+ "epoch": 2.50390015600624,
2271
+ "grad_norm": 1.3476183414459229,
2272
+ "learning_rate": 0.0006426342767996434,
2273
+ "loss": 0.2636,
2274
+ "step": 3210
2275
+ },
2276
+ {
2277
+ "epoch": 2.511700468018721,
2278
+ "grad_norm": 2.888965606689453,
2279
+ "learning_rate": 0.0006415199465121462,
2280
+ "loss": 0.216,
2281
+ "step": 3220
2282
+ },
2283
+ {
2284
+ "epoch": 2.5195007800312013,
2285
+ "grad_norm": 1.8190357685089111,
2286
+ "learning_rate": 0.000640405616224649,
2287
+ "loss": 0.3498,
2288
+ "step": 3230
2289
+ },
2290
+ {
2291
+ "epoch": 2.5273010920436816,
2292
+ "grad_norm": 1.5132287740707397,
2293
+ "learning_rate": 0.0006392912859371518,
2294
+ "loss": 0.227,
2295
+ "step": 3240
2296
+ },
2297
+ {
2298
+ "epoch": 2.5351014040561624,
2299
+ "grad_norm": 2.8061325550079346,
2300
+ "learning_rate": 0.0006381769556496546,
2301
+ "loss": 0.2089,
2302
+ "step": 3250
2303
+ },
2304
+ {
2305
+ "epoch": 2.5429017160686427,
2306
+ "grad_norm": 2.2521767616271973,
2307
+ "learning_rate": 0.0006370626253621573,
2308
+ "loss": 0.2362,
2309
+ "step": 3260
2310
+ },
2311
+ {
2312
+ "epoch": 2.5507020280811235,
2313
+ "grad_norm": 1.4635623693466187,
2314
+ "learning_rate": 0.0006359482950746601,
2315
+ "loss": 0.1901,
2316
+ "step": 3270
2317
+ },
2318
+ {
2319
+ "epoch": 2.5585023400936038,
2320
+ "grad_norm": 1.9882755279541016,
2321
+ "learning_rate": 0.0006348339647871629,
2322
+ "loss": 0.2387,
2323
+ "step": 3280
2324
+ },
2325
+ {
2326
+ "epoch": 2.566302652106084,
2327
+ "grad_norm": 6.737502098083496,
2328
+ "learning_rate": 0.0006337196344996657,
2329
+ "loss": 0.2278,
2330
+ "step": 3290
2331
+ },
2332
+ {
2333
+ "epoch": 2.574102964118565,
2334
+ "grad_norm": 1.686926245689392,
2335
+ "learning_rate": 0.0006326053042121685,
2336
+ "loss": 0.3118,
2337
+ "step": 3300
2338
+ },
2339
+ {
2340
+ "epoch": 2.581903276131045,
2341
+ "grad_norm": 1.436584234237671,
2342
+ "learning_rate": 0.0006314909739246712,
2343
+ "loss": 0.1787,
2344
+ "step": 3310
2345
+ },
2346
+ {
2347
+ "epoch": 2.589703588143526,
2348
+ "grad_norm": 3.646476984024048,
2349
+ "learning_rate": 0.000630376643637174,
2350
+ "loss": 0.2165,
2351
+ "step": 3320
2352
+ },
2353
+ {
2354
+ "epoch": 2.5975039001560063,
2355
+ "grad_norm": 1.8787113428115845,
2356
+ "learning_rate": 0.0006292623133496768,
2357
+ "loss": 0.1993,
2358
+ "step": 3330
2359
+ },
2360
+ {
2361
+ "epoch": 2.6053042121684866,
2362
+ "grad_norm": 2.4485440254211426,
2363
+ "learning_rate": 0.0006281479830621796,
2364
+ "loss": 0.24,
2365
+ "step": 3340
2366
+ },
2367
+ {
2368
+ "epoch": 2.6131045241809674,
2369
+ "grad_norm": 2.73197865486145,
2370
+ "learning_rate": 0.0006270336527746824,
2371
+ "loss": 0.228,
2372
+ "step": 3350
2373
+ },
2374
+ {
2375
+ "epoch": 2.6209048361934477,
2376
+ "grad_norm": 3.2943315505981445,
2377
+ "learning_rate": 0.0006259193224871852,
2378
+ "loss": 0.2289,
2379
+ "step": 3360
2380
+ },
2381
+ {
2382
+ "epoch": 2.6287051482059285,
2383
+ "grad_norm": 2.165308952331543,
2384
+ "learning_rate": 0.000624804992199688,
2385
+ "loss": 0.2435,
2386
+ "step": 3370
2387
+ },
2388
+ {
2389
+ "epoch": 2.636505460218409,
2390
+ "grad_norm": 2.3766629695892334,
2391
+ "learning_rate": 0.0006236906619121908,
2392
+ "loss": 0.26,
2393
+ "step": 3380
2394
+ },
2395
+ {
2396
+ "epoch": 2.644305772230889,
2397
+ "grad_norm": 1.1527057886123657,
2398
+ "learning_rate": 0.0006225763316246936,
2399
+ "loss": 0.2486,
2400
+ "step": 3390
2401
+ },
2402
+ {
2403
+ "epoch": 2.6521060842433695,
2404
+ "grad_norm": 2.6304874420166016,
2405
+ "learning_rate": 0.0006214620013371963,
2406
+ "loss": 0.3827,
2407
+ "step": 3400
2408
+ },
2409
+ {
2410
+ "epoch": 2.6599063962558502,
2411
+ "grad_norm": 1.5219537019729614,
2412
+ "learning_rate": 0.0006203476710496991,
2413
+ "loss": 0.2231,
2414
+ "step": 3410
2415
+ },
2416
+ {
2417
+ "epoch": 2.667706708268331,
2418
+ "grad_norm": 1.9267528057098389,
2419
+ "learning_rate": 0.0006192333407622019,
2420
+ "loss": 0.2468,
2421
+ "step": 3420
2422
+ },
2423
+ {
2424
+ "epoch": 2.6755070202808113,
2425
+ "grad_norm": 2.247861385345459,
2426
+ "learning_rate": 0.0006181190104747047,
2427
+ "loss": 0.2463,
2428
+ "step": 3430
2429
+ },
2430
+ {
2431
+ "epoch": 2.6833073322932917,
2432
+ "grad_norm": 2.6133053302764893,
2433
+ "learning_rate": 0.0006170046801872074,
2434
+ "loss": 0.2636,
2435
+ "step": 3440
2436
+ },
2437
+ {
2438
+ "epoch": 2.691107644305772,
2439
+ "grad_norm": 1.4675954580307007,
2440
+ "learning_rate": 0.0006158903498997102,
2441
+ "loss": 0.2141,
2442
+ "step": 3450
2443
+ },
2444
+ {
2445
+ "epoch": 2.6989079563182528,
2446
+ "grad_norm": 3.3972527980804443,
2447
+ "learning_rate": 0.000614776019612213,
2448
+ "loss": 0.2102,
2449
+ "step": 3460
2450
+ },
2451
+ {
2452
+ "epoch": 2.706708268330733,
2453
+ "grad_norm": 2.0020527839660645,
2454
+ "learning_rate": 0.0006136616893247158,
2455
+ "loss": 0.2618,
2456
+ "step": 3470
2457
+ },
2458
+ {
2459
+ "epoch": 2.714508580343214,
2460
+ "grad_norm": 1.4799424409866333,
2461
+ "learning_rate": 0.0006125473590372186,
2462
+ "loss": 0.2644,
2463
+ "step": 3480
2464
+ },
2465
+ {
2466
+ "epoch": 2.722308892355694,
2467
+ "grad_norm": 2.207921028137207,
2468
+ "learning_rate": 0.0006114330287497214,
2469
+ "loss": 0.2496,
2470
+ "step": 3490
2471
+ },
2472
+ {
2473
+ "epoch": 2.7301092043681745,
2474
+ "grad_norm": 2.7361607551574707,
2475
+ "learning_rate": 0.0006103186984622242,
2476
+ "loss": 0.1917,
2477
+ "step": 3500
2478
+ },
2479
+ {
2480
+ "epoch": 2.7379095163806553,
2481
+ "grad_norm": 2.6031532287597656,
2482
+ "learning_rate": 0.000609204368174727,
2483
+ "loss": 0.2358,
2484
+ "step": 3510
2485
+ },
2486
+ {
2487
+ "epoch": 2.7457098283931356,
2488
+ "grad_norm": 1.442651629447937,
2489
+ "learning_rate": 0.0006080900378872299,
2490
+ "loss": 0.2929,
2491
+ "step": 3520
2492
+ },
2493
+ {
2494
+ "epoch": 2.7535101404056164,
2495
+ "grad_norm": 2.853076457977295,
2496
+ "learning_rate": 0.0006069757075997325,
2497
+ "loss": 0.2287,
2498
+ "step": 3530
2499
+ },
2500
+ {
2501
+ "epoch": 2.7613104524180967,
2502
+ "grad_norm": 1.827863335609436,
2503
+ "learning_rate": 0.0006058613773122353,
2504
+ "loss": 0.284,
2505
+ "step": 3540
2506
+ },
2507
+ {
2508
+ "epoch": 2.769110764430577,
2509
+ "grad_norm": 1.29642915725708,
2510
+ "learning_rate": 0.0006047470470247382,
2511
+ "loss": 0.2156,
2512
+ "step": 3550
2513
+ },
2514
+ {
2515
+ "epoch": 2.776911076443058,
2516
+ "grad_norm": 2.0758543014526367,
2517
+ "learning_rate": 0.000603632716737241,
2518
+ "loss": 0.4312,
2519
+ "step": 3560
2520
+ },
2521
+ {
2522
+ "epoch": 2.784711388455538,
2523
+ "grad_norm": 2.1832942962646484,
2524
+ "learning_rate": 0.0006025183864497438,
2525
+ "loss": 0.22,
2526
+ "step": 3570
2527
+ },
2528
+ {
2529
+ "epoch": 2.792511700468019,
2530
+ "grad_norm": 1.541040301322937,
2531
+ "learning_rate": 0.0006014040561622464,
2532
+ "loss": 0.2452,
2533
+ "step": 3580
2534
+ },
2535
+ {
2536
+ "epoch": 2.800312012480499,
2537
+ "grad_norm": 1.5947539806365967,
2538
+ "learning_rate": 0.0006002897258747492,
2539
+ "loss": 0.2708,
2540
+ "step": 3590
2541
+ },
2542
+ {
2543
+ "epoch": 2.8081123244929795,
2544
+ "grad_norm": 2.130390167236328,
2545
+ "learning_rate": 0.000599175395587252,
2546
+ "loss": 0.2194,
2547
+ "step": 3600
2548
+ },
2549
+ {
2550
+ "epoch": 2.8159126365054603,
2551
+ "grad_norm": 2.382166862487793,
2552
+ "learning_rate": 0.0005980610652997549,
2553
+ "loss": 0.1931,
2554
+ "step": 3610
2555
+ },
2556
+ {
2557
+ "epoch": 2.8237129485179406,
2558
+ "grad_norm": 4.421852111816406,
2559
+ "learning_rate": 0.0005969467350122577,
2560
+ "loss": 0.3081,
2561
+ "step": 3620
2562
+ },
2563
+ {
2564
+ "epoch": 2.8315132605304214,
2565
+ "grad_norm": 1.1889768838882446,
2566
+ "learning_rate": 0.0005958324047247605,
2567
+ "loss": 0.2134,
2568
+ "step": 3630
2569
+ },
2570
+ {
2571
+ "epoch": 2.8393135725429017,
2572
+ "grad_norm": 2.6204874515533447,
2573
+ "learning_rate": 0.0005947180744372633,
2574
+ "loss": 0.2128,
2575
+ "step": 3640
2576
+ },
2577
+ {
2578
+ "epoch": 2.847113884555382,
2579
+ "grad_norm": 1.4705913066864014,
2580
+ "learning_rate": 0.0005936037441497661,
2581
+ "loss": 0.1894,
2582
+ "step": 3650
2583
+ },
2584
+ {
2585
+ "epoch": 2.854914196567863,
2586
+ "grad_norm": 3.110135555267334,
2587
+ "learning_rate": 0.0005924894138622688,
2588
+ "loss": 0.2072,
2589
+ "step": 3660
2590
+ },
2591
+ {
2592
+ "epoch": 2.862714508580343,
2593
+ "grad_norm": 1.3255491256713867,
2594
+ "learning_rate": 0.0005913750835747716,
2595
+ "loss": 0.2325,
2596
+ "step": 3670
2597
+ },
2598
+ {
2599
+ "epoch": 2.870514820592824,
2600
+ "grad_norm": 2.2520713806152344,
2601
+ "learning_rate": 0.0005902607532872744,
2602
+ "loss": 0.2121,
2603
+ "step": 3680
2604
+ },
2605
+ {
2606
+ "epoch": 2.8783151326053042,
2607
+ "grad_norm": 1.4630913734436035,
2608
+ "learning_rate": 0.0005891464229997772,
2609
+ "loss": 0.2281,
2610
+ "step": 3690
2611
+ },
2612
+ {
2613
+ "epoch": 2.8861154446177846,
2614
+ "grad_norm": 2.0491292476654053,
2615
+ "learning_rate": 0.00058803209271228,
2616
+ "loss": 0.2227,
2617
+ "step": 3700
2618
+ },
2619
+ {
2620
+ "epoch": 2.8939157566302653,
2621
+ "grad_norm": 6.133053302764893,
2622
+ "learning_rate": 0.0005869177624247827,
2623
+ "loss": 0.3106,
2624
+ "step": 3710
2625
+ },
2626
+ {
2627
+ "epoch": 2.9017160686427457,
2628
+ "grad_norm": 2.3226382732391357,
2629
+ "learning_rate": 0.0005858034321372855,
2630
+ "loss": 0.2193,
2631
+ "step": 3720
2632
+ },
2633
+ {
2634
+ "epoch": 2.9095163806552264,
2635
+ "grad_norm": 1.351330041885376,
2636
+ "learning_rate": 0.0005846891018497883,
2637
+ "loss": 0.1928,
2638
+ "step": 3730
2639
+ },
2640
+ {
2641
+ "epoch": 2.9173166926677068,
2642
+ "grad_norm": 0.9889002442359924,
2643
+ "learning_rate": 0.0005835747715622911,
2644
+ "loss": 0.2395,
2645
+ "step": 3740
2646
+ },
2647
+ {
2648
+ "epoch": 2.925117004680187,
2649
+ "grad_norm": 3.9231808185577393,
2650
+ "learning_rate": 0.0005824604412747938,
2651
+ "loss": 0.2288,
2652
+ "step": 3750
2653
+ },
2654
+ {
2655
+ "epoch": 2.932917316692668,
2656
+ "grad_norm": 1.1299773454666138,
2657
+ "learning_rate": 0.0005813461109872967,
2658
+ "loss": 0.1996,
2659
+ "step": 3760
2660
+ },
2661
+ {
2662
+ "epoch": 2.940717628705148,
2663
+ "grad_norm": 1.894411563873291,
2664
+ "learning_rate": 0.0005802317806997995,
2665
+ "loss": 0.2444,
2666
+ "step": 3770
2667
+ },
2668
+ {
2669
+ "epoch": 2.948517940717629,
2670
+ "grad_norm": 3.100918769836426,
2671
+ "learning_rate": 0.0005791174504123023,
2672
+ "loss": 0.2723,
2673
+ "step": 3780
2674
+ },
2675
+ {
2676
+ "epoch": 2.9563182527301093,
2677
+ "grad_norm": 2.921398639678955,
2678
+ "learning_rate": 0.0005780031201248051,
2679
+ "loss": 0.1963,
2680
+ "step": 3790
2681
+ },
2682
+ {
2683
+ "epoch": 2.9641185647425896,
2684
+ "grad_norm": 2.898193120956421,
2685
+ "learning_rate": 0.0005768887898373078,
2686
+ "loss": 0.2262,
2687
+ "step": 3800
2688
+ },
2689
+ {
2690
+ "epoch": 2.97191887675507,
2691
+ "grad_norm": 1.8510135412216187,
2692
+ "learning_rate": 0.0005757744595498106,
2693
+ "loss": 0.2253,
2694
+ "step": 3810
2695
+ },
2696
+ {
2697
+ "epoch": 2.9797191887675507,
2698
+ "grad_norm": 2.716972827911377,
2699
+ "learning_rate": 0.0005746601292623134,
2700
+ "loss": 0.222,
2701
+ "step": 3820
2702
+ },
2703
+ {
2704
+ "epoch": 2.9875195007800315,
2705
+ "grad_norm": 2.466111660003662,
2706
+ "learning_rate": 0.0005735457989748162,
2707
+ "loss": 0.2903,
2708
+ "step": 3830
2709
+ },
2710
+ {
2711
+ "epoch": 2.995319812792512,
2712
+ "grad_norm": 2.409747838973999,
2713
+ "learning_rate": 0.0005724314686873189,
2714
+ "loss": 0.3088,
2715
+ "step": 3840
2716
+ },
2717
+ {
2718
+ "epoch": 3.0,
2719
+ "eval_loss": 0.34428906440734863,
2720
+ "eval_runtime": 557.5413,
2721
+ "eval_samples_per_second": 0.986,
2722
+ "eval_steps_per_second": 0.986,
2723
+ "eval_wer": 24.454527901139215,
2724
+ "step": 3846
2725
+ },
2726
+ {
2727
+ "epoch": 3.003120124804992,
2728
+ "grad_norm": 1.5137571096420288,
2729
+ "learning_rate": 0.0005713171383998217,
2730
+ "loss": 0.197,
2731
+ "step": 3850
2732
+ },
2733
+ {
2734
+ "epoch": 3.010920436817473,
2735
+ "grad_norm": 0.7653738856315613,
2736
+ "learning_rate": 0.0005702028081123245,
2737
+ "loss": 0.1295,
2738
+ "step": 3860
2739
+ },
2740
+ {
2741
+ "epoch": 3.0187207488299532,
2742
+ "grad_norm": 1.05947744846344,
2743
+ "learning_rate": 0.0005690884778248273,
2744
+ "loss": 0.1684,
2745
+ "step": 3870
2746
+ },
2747
+ {
2748
+ "epoch": 3.0265210608424336,
2749
+ "grad_norm": 1.4757158756256104,
2750
+ "learning_rate": 0.0005679741475373301,
2751
+ "loss": 0.1379,
2752
+ "step": 3880
2753
+ },
2754
+ {
2755
+ "epoch": 3.0343213728549143,
2756
+ "grad_norm": 1.789844274520874,
2757
+ "learning_rate": 0.0005668598172498329,
2758
+ "loss": 0.1711,
2759
+ "step": 3890
2760
+ },
2761
+ {
2762
+ "epoch": 3.0421216848673946,
2763
+ "grad_norm": 1.6123414039611816,
2764
+ "learning_rate": 0.0005657454869623357,
2765
+ "loss": 0.1375,
2766
+ "step": 3900
2767
+ },
2768
+ {
2769
+ "epoch": 3.049921996879875,
2770
+ "grad_norm": 1.1085964441299438,
2771
+ "learning_rate": 0.0005646311566748385,
2772
+ "loss": 0.1552,
2773
+ "step": 3910
2774
+ },
2775
+ {
2776
+ "epoch": 3.0577223088923557,
2777
+ "grad_norm": 0.5497006773948669,
2778
+ "learning_rate": 0.0005635168263873413,
2779
+ "loss": 0.2185,
2780
+ "step": 3920
2781
+ },
2782
+ {
2783
+ "epoch": 3.065522620904836,
2784
+ "grad_norm": 1.584539532661438,
2785
+ "learning_rate": 0.000562402496099844,
2786
+ "loss": 0.1398,
2787
+ "step": 3930
2788
+ },
2789
+ {
2790
+ "epoch": 3.073322932917317,
2791
+ "grad_norm": 1.2666114568710327,
2792
+ "learning_rate": 0.0005612881658123468,
2793
+ "loss": 0.1372,
2794
+ "step": 3940
2795
+ },
2796
+ {
2797
+ "epoch": 3.081123244929797,
2798
+ "grad_norm": 2.3011374473571777,
2799
+ "learning_rate": 0.0005601738355248496,
2800
+ "loss": 0.1354,
2801
+ "step": 3950
2802
+ },
2803
+ {
2804
+ "epoch": 3.0889235569422775,
2805
+ "grad_norm": 1.05606210231781,
2806
+ "learning_rate": 0.0005590595052373524,
2807
+ "loss": 0.1158,
2808
+ "step": 3960
2809
+ },
2810
+ {
2811
+ "epoch": 3.0967238689547583,
2812
+ "grad_norm": 1.0332001447677612,
2813
+ "learning_rate": 0.0005579451749498552,
2814
+ "loss": 0.1333,
2815
+ "step": 3970
2816
+ },
2817
+ {
2818
+ "epoch": 3.1045241809672386,
2819
+ "grad_norm": 1.020912766456604,
2820
+ "learning_rate": 0.0005568308446623579,
2821
+ "loss": 0.1259,
2822
+ "step": 3980
2823
+ },
2824
+ {
2825
+ "epoch": 3.1123244929797194,
2826
+ "grad_norm": 1.2610992193222046,
2827
+ "learning_rate": 0.0005557165143748607,
2828
+ "loss": 0.1391,
2829
+ "step": 3990
2830
+ },
2831
+ {
2832
+ "epoch": 3.1201248049921997,
2833
+ "grad_norm": 1.1720095872879028,
2834
+ "learning_rate": 0.0005546021840873635,
2835
+ "loss": 0.188,
2836
+ "step": 4000
2837
+ },
2838
+ {
2839
+ "epoch": 3.12792511700468,
2840
+ "grad_norm": 3.7483229637145996,
2841
+ "learning_rate": 0.0005534878537998663,
2842
+ "loss": 0.1198,
2843
+ "step": 4010
2844
+ },
2845
+ {
2846
+ "epoch": 3.135725429017161,
2847
+ "grad_norm": 0.9843854308128357,
2848
+ "learning_rate": 0.000552373523512369,
2849
+ "loss": 0.1405,
2850
+ "step": 4020
2851
+ },
2852
+ {
2853
+ "epoch": 3.143525741029641,
2854
+ "grad_norm": 2.162191152572632,
2855
+ "learning_rate": 0.0005512591932248719,
2856
+ "loss": 0.1268,
2857
+ "step": 4030
2858
+ },
2859
+ {
2860
+ "epoch": 3.151326053042122,
2861
+ "grad_norm": 1.1201051473617554,
2862
+ "learning_rate": 0.0005501448629373747,
2863
+ "loss": 0.1354,
2864
+ "step": 4040
2865
+ },
2866
+ {
2867
+ "epoch": 3.159126365054602,
2868
+ "grad_norm": 8.070413589477539,
2869
+ "learning_rate": 0.0005490305326498775,
2870
+ "loss": 0.1438,
2871
+ "step": 4050
2872
+ },
2873
+ {
2874
+ "epoch": 3.1669266770670825,
2875
+ "grad_norm": 0.971108078956604,
2876
+ "learning_rate": 0.0005479162023623803,
2877
+ "loss": 0.1521,
2878
+ "step": 4060
2879
+ },
2880
+ {
2881
+ "epoch": 3.1747269890795633,
2882
+ "grad_norm": 0.9375523924827576,
2883
+ "learning_rate": 0.000546801872074883,
2884
+ "loss": 0.1313,
2885
+ "step": 4070
2886
+ },
2887
+ {
2888
+ "epoch": 3.1825273010920436,
2889
+ "grad_norm": 1.3351547718048096,
2890
+ "learning_rate": 0.0005456875417873858,
2891
+ "loss": 0.1626,
2892
+ "step": 4080
2893
+ },
2894
+ {
2895
+ "epoch": 3.1903276131045244,
2896
+ "grad_norm": 2.073784589767456,
2897
+ "learning_rate": 0.0005445732114998886,
2898
+ "loss": 0.1435,
2899
+ "step": 4090
2900
+ },
2901
+ {
2902
+ "epoch": 3.1981279251170047,
2903
+ "grad_norm": 1.691977620124817,
2904
+ "learning_rate": 0.0005434588812123914,
2905
+ "loss": 0.1742,
2906
+ "step": 4100
2907
+ },
2908
+ {
2909
+ "epoch": 3.205928237129485,
2910
+ "grad_norm": 22.18892478942871,
2911
+ "learning_rate": 0.0005423445509248941,
2912
+ "loss": 0.1618,
2913
+ "step": 4110
2914
+ },
2915
+ {
2916
+ "epoch": 3.213728549141966,
2917
+ "grad_norm": 1.7861751317977905,
2918
+ "learning_rate": 0.0005412302206373969,
2919
+ "loss": 0.1351,
2920
+ "step": 4120
2921
+ },
2922
+ {
2923
+ "epoch": 3.221528861154446,
2924
+ "grad_norm": 1.1942836046218872,
2925
+ "learning_rate": 0.0005401158903498997,
2926
+ "loss": 0.1403,
2927
+ "step": 4130
2928
+ },
2929
+ {
2930
+ "epoch": 3.2293291731669265,
2931
+ "grad_norm": 4.223365306854248,
2932
+ "learning_rate": 0.0005390015600624025,
2933
+ "loss": 0.1568,
2934
+ "step": 4140
2935
+ },
2936
+ {
2937
+ "epoch": 3.2371294851794072,
2938
+ "grad_norm": 1.828805685043335,
2939
+ "learning_rate": 0.0005378872297749053,
2940
+ "loss": 0.1732,
2941
+ "step": 4150
2942
+ },
2943
+ {
2944
+ "epoch": 3.2449297971918876,
2945
+ "grad_norm": 1.3445240259170532,
2946
+ "learning_rate": 0.0005367728994874081,
2947
+ "loss": 0.1609,
2948
+ "step": 4160
2949
+ },
2950
+ {
2951
+ "epoch": 3.2527301092043683,
2952
+ "grad_norm": 1.8210989236831665,
2953
+ "learning_rate": 0.0005356585691999109,
2954
+ "loss": 0.1529,
2955
+ "step": 4170
2956
+ },
2957
+ {
2958
+ "epoch": 3.2605304212168487,
2959
+ "grad_norm": 1.5427830219268799,
2960
+ "learning_rate": 0.0005345442389124137,
2961
+ "loss": 0.1245,
2962
+ "step": 4180
2963
+ },
2964
+ {
2965
+ "epoch": 3.268330733229329,
2966
+ "grad_norm": 2.216970920562744,
2967
+ "learning_rate": 0.0005334299086249165,
2968
+ "loss": 0.1321,
2969
+ "step": 4190
2970
+ },
2971
+ {
2972
+ "epoch": 3.2761310452418098,
2973
+ "grad_norm": 2.470158338546753,
2974
+ "learning_rate": 0.0005323155783374192,
2975
+ "loss": 0.1466,
2976
+ "step": 4200
2977
+ },
2978
+ {
2979
+ "epoch": 3.28393135725429,
2980
+ "grad_norm": 1.8444827795028687,
2981
+ "learning_rate": 0.000531201248049922,
2982
+ "loss": 0.141,
2983
+ "step": 4210
2984
+ },
2985
+ {
2986
+ "epoch": 3.291731669266771,
2987
+ "grad_norm": 1.771625280380249,
2988
+ "learning_rate": 0.0005300869177624248,
2989
+ "loss": 0.1443,
2990
+ "step": 4220
2991
+ },
2992
+ {
2993
+ "epoch": 3.299531981279251,
2994
+ "grad_norm": 2.486222267150879,
2995
+ "learning_rate": 0.0005289725874749276,
2996
+ "loss": 0.1665,
2997
+ "step": 4230
2998
+ },
2999
+ {
3000
+ "epoch": 3.3073322932917315,
3001
+ "grad_norm": 2.0185546875,
3002
+ "learning_rate": 0.0005278582571874304,
3003
+ "loss": 0.2224,
3004
+ "step": 4240
3005
+ },
3006
+ {
3007
+ "epoch": 3.3151326053042123,
3008
+ "grad_norm": 1.810857892036438,
3009
+ "learning_rate": 0.0005267439268999331,
3010
+ "loss": 0.1384,
3011
+ "step": 4250
3012
+ },
3013
+ {
3014
+ "epoch": 3.3229329173166926,
3015
+ "grad_norm": 0.9884628057479858,
3016
+ "learning_rate": 0.0005256295966124359,
3017
+ "loss": 0.1028,
3018
+ "step": 4260
3019
+ },
3020
+ {
3021
+ "epoch": 3.330733229329173,
3022
+ "grad_norm": 0.9811989068984985,
3023
+ "learning_rate": 0.0005245152663249387,
3024
+ "loss": 0.1327,
3025
+ "step": 4270
3026
+ },
3027
+ {
3028
+ "epoch": 3.3385335413416537,
3029
+ "grad_norm": 0.9268475770950317,
3030
+ "learning_rate": 0.0005234009360374415,
3031
+ "loss": 0.2011,
3032
+ "step": 4280
3033
+ },
3034
+ {
3035
+ "epoch": 3.346333853354134,
3036
+ "grad_norm": 2.9813990592956543,
3037
+ "learning_rate": 0.0005222866057499443,
3038
+ "loss": 0.1729,
3039
+ "step": 4290
3040
+ },
3041
+ {
3042
+ "epoch": 3.354134165366615,
3043
+ "grad_norm": 1.216805338859558,
3044
+ "learning_rate": 0.0005211722754624471,
3045
+ "loss": 0.148,
3046
+ "step": 4300
3047
+ },
3048
+ {
3049
+ "epoch": 3.361934477379095,
3050
+ "grad_norm": 4.585384845733643,
3051
+ "learning_rate": 0.0005200579451749499,
3052
+ "loss": 0.28,
3053
+ "step": 4310
3054
+ },
3055
+ {
3056
+ "epoch": 3.3697347893915754,
3057
+ "grad_norm": 1.331865906715393,
3058
+ "learning_rate": 0.0005189436148874527,
3059
+ "loss": 0.1757,
3060
+ "step": 4320
3061
+ },
3062
+ {
3063
+ "epoch": 3.377535101404056,
3064
+ "grad_norm": 3.4767305850982666,
3065
+ "learning_rate": 0.0005178292845999555,
3066
+ "loss": 0.1955,
3067
+ "step": 4330
3068
+ },
3069
+ {
3070
+ "epoch": 3.3853354134165365,
3071
+ "grad_norm": 1.2598906755447388,
3072
+ "learning_rate": 0.0005167149543124582,
3073
+ "loss": 0.1633,
3074
+ "step": 4340
3075
+ },
3076
+ {
3077
+ "epoch": 3.3931357254290173,
3078
+ "grad_norm": 1.9768121242523193,
3079
+ "learning_rate": 0.000515600624024961,
3080
+ "loss": 0.1314,
3081
+ "step": 4350
3082
+ },
3083
+ {
3084
+ "epoch": 3.4009360374414976,
3085
+ "grad_norm": 1.916244387626648,
3086
+ "learning_rate": 0.0005144862937374638,
3087
+ "loss": 0.1826,
3088
+ "step": 4360
3089
+ },
3090
+ {
3091
+ "epoch": 3.408736349453978,
3092
+ "grad_norm": 1.159989595413208,
3093
+ "learning_rate": 0.0005133719634499666,
3094
+ "loss": 0.1655,
3095
+ "step": 4370
3096
+ },
3097
+ {
3098
+ "epoch": 3.4165366614664587,
3099
+ "grad_norm": 2.1428520679473877,
3100
+ "learning_rate": 0.0005122576331624693,
3101
+ "loss": 0.1868,
3102
+ "step": 4380
3103
+ },
3104
+ {
3105
+ "epoch": 3.424336973478939,
3106
+ "grad_norm": 1.3343071937561035,
3107
+ "learning_rate": 0.0005111433028749721,
3108
+ "loss": 0.1539,
3109
+ "step": 4390
3110
+ },
3111
+ {
3112
+ "epoch": 3.43213728549142,
3113
+ "grad_norm": 2.33966326713562,
3114
+ "learning_rate": 0.0005100289725874749,
3115
+ "loss": 0.1613,
3116
+ "step": 4400
3117
+ },
3118
+ {
3119
+ "epoch": 3.4399375975039,
3120
+ "grad_norm": 1.662204384803772,
3121
+ "learning_rate": 0.0005089146422999777,
3122
+ "loss": 0.1554,
3123
+ "step": 4410
3124
+ },
3125
+ {
3126
+ "epoch": 3.4477379095163805,
3127
+ "grad_norm": 0.7760083675384521,
3128
+ "learning_rate": 0.0005078003120124805,
3129
+ "loss": 0.0962,
3130
+ "step": 4420
3131
+ },
3132
+ {
3133
+ "epoch": 3.4555382215288613,
3134
+ "grad_norm": 1.860338807106018,
3135
+ "learning_rate": 0.0005066859817249833,
3136
+ "loss": 0.1757,
3137
+ "step": 4430
3138
+ },
3139
+ {
3140
+ "epoch": 3.4633385335413416,
3141
+ "grad_norm": 0.6259675025939941,
3142
+ "learning_rate": 0.0005055716514374861,
3143
+ "loss": 0.176,
3144
+ "step": 4440
3145
+ },
3146
+ {
3147
+ "epoch": 3.4711388455538223,
3148
+ "grad_norm": 2.819291591644287,
3149
+ "learning_rate": 0.0005044573211499889,
3150
+ "loss": 0.2447,
3151
+ "step": 4450
3152
+ },
3153
+ {
3154
+ "epoch": 3.4789391575663027,
3155
+ "grad_norm": 1.125827431678772,
3156
+ "learning_rate": 0.0005033429908624917,
3157
+ "loss": 0.1265,
3158
+ "step": 4460
3159
+ },
3160
+ {
3161
+ "epoch": 3.486739469578783,
3162
+ "grad_norm": 1.1929935216903687,
3163
+ "learning_rate": 0.0005022286605749944,
3164
+ "loss": 0.1428,
3165
+ "step": 4470
3166
+ },
3167
+ {
3168
+ "epoch": 3.4945397815912638,
3169
+ "grad_norm": 1.2320295572280884,
3170
+ "learning_rate": 0.0005011143302874972,
3171
+ "loss": 0.1372,
3172
+ "step": 4480
3173
+ },
3174
+ {
3175
+ "epoch": 3.502340093603744,
3176
+ "grad_norm": 1.1627320051193237,
3177
+ "learning_rate": 0.0005,
3178
+ "loss": 0.1143,
3179
+ "step": 4490
3180
+ },
3181
+ {
3182
+ "epoch": 3.510140405616225,
3183
+ "grad_norm": 2.7850723266601562,
3184
+ "learning_rate": 0.0004988856697125028,
3185
+ "loss": 0.1431,
3186
+ "step": 4500
3187
+ },
3188
+ {
3189
+ "epoch": 3.517940717628705,
3190
+ "grad_norm": 1.2920804023742676,
3191
+ "learning_rate": 0.0004977713394250056,
3192
+ "loss": 0.17,
3193
+ "step": 4510
3194
+ },
3195
+ {
3196
+ "epoch": 3.5257410296411855,
3197
+ "grad_norm": 1.2807234525680542,
3198
+ "learning_rate": 0.0004966570091375084,
3199
+ "loss": 0.1379,
3200
+ "step": 4520
3201
+ },
3202
+ {
3203
+ "epoch": 3.5335413416536663,
3204
+ "grad_norm": 1.2454224824905396,
3205
+ "learning_rate": 0.0004955426788500111,
3206
+ "loss": 0.1439,
3207
+ "step": 4530
3208
+ },
3209
+ {
3210
+ "epoch": 3.5413416536661466,
3211
+ "grad_norm": 3.7264480590820312,
3212
+ "learning_rate": 0.0004944283485625139,
3213
+ "loss": 0.1691,
3214
+ "step": 4540
3215
+ },
3216
+ {
3217
+ "epoch": 3.5491419656786274,
3218
+ "grad_norm": 1.653113842010498,
3219
+ "learning_rate": 0.0004933140182750167,
3220
+ "loss": 0.157,
3221
+ "step": 4550
3222
+ },
3223
+ {
3224
+ "epoch": 3.5569422776911077,
3225
+ "grad_norm": 2.0576372146606445,
3226
+ "learning_rate": 0.0004921996879875195,
3227
+ "loss": 0.171,
3228
+ "step": 4560
3229
+ },
3230
+ {
3231
+ "epoch": 3.564742589703588,
3232
+ "grad_norm": 1.499207615852356,
3233
+ "learning_rate": 0.0004910853577000223,
3234
+ "loss": 0.1297,
3235
+ "step": 4570
3236
+ },
3237
+ {
3238
+ "epoch": 3.572542901716069,
3239
+ "grad_norm": 1.2240318059921265,
3240
+ "learning_rate": 0.0004899710274125251,
3241
+ "loss": 0.2274,
3242
+ "step": 4580
3243
+ },
3244
+ {
3245
+ "epoch": 3.580343213728549,
3246
+ "grad_norm": 1.4562804698944092,
3247
+ "learning_rate": 0.0004888566971250279,
3248
+ "loss": 0.1884,
3249
+ "step": 4590
3250
+ },
3251
+ {
3252
+ "epoch": 3.58814352574103,
3253
+ "grad_norm": 2.0862207412719727,
3254
+ "learning_rate": 0.00048774236683753067,
3255
+ "loss": 0.1323,
3256
+ "step": 4600
3257
+ },
3258
+ {
3259
+ "epoch": 3.5959438377535102,
3260
+ "grad_norm": 1.8791660070419312,
3261
+ "learning_rate": 0.00048662803655003347,
3262
+ "loss": 0.1446,
3263
+ "step": 4610
3264
+ },
3265
+ {
3266
+ "epoch": 3.6037441497659906,
3267
+ "grad_norm": 2.589106798171997,
3268
+ "learning_rate": 0.0004855137062625362,
3269
+ "loss": 0.1722,
3270
+ "step": 4620
3271
+ },
3272
+ {
3273
+ "epoch": 3.611544461778471,
3274
+ "grad_norm": 1.3053058385849,
3275
+ "learning_rate": 0.000484399375975039,
3276
+ "loss": 0.1458,
3277
+ "step": 4630
3278
+ },
3279
+ {
3280
+ "epoch": 3.6193447737909517,
3281
+ "grad_norm": 1.4898595809936523,
3282
+ "learning_rate": 0.00048328504568754177,
3283
+ "loss": 0.155,
3284
+ "step": 4640
3285
+ },
3286
+ {
3287
+ "epoch": 3.627145085803432,
3288
+ "grad_norm": 1.9109569787979126,
3289
+ "learning_rate": 0.00048217071540004457,
3290
+ "loss": 0.1526,
3291
+ "step": 4650
3292
+ },
3293
+ {
3294
+ "epoch": 3.6349453978159127,
3295
+ "grad_norm": 2.045905351638794,
3296
+ "learning_rate": 0.00048105638511254737,
3297
+ "loss": 0.1281,
3298
+ "step": 4660
3299
+ },
3300
+ {
3301
+ "epoch": 3.642745709828393,
3302
+ "grad_norm": 2.0706069469451904,
3303
+ "learning_rate": 0.0004799420548250502,
3304
+ "loss": 0.2016,
3305
+ "step": 4670
3306
+ },
3307
+ {
3308
+ "epoch": 3.6505460218408734,
3309
+ "grad_norm": 1.3242971897125244,
3310
+ "learning_rate": 0.000478827724537553,
3311
+ "loss": 0.1715,
3312
+ "step": 4680
3313
+ },
3314
+ {
3315
+ "epoch": 3.658346333853354,
3316
+ "grad_norm": 1.2207064628601074,
3317
+ "learning_rate": 0.0004777133942500557,
3318
+ "loss": 0.1262,
3319
+ "step": 4690
3320
+ },
3321
+ {
3322
+ "epoch": 3.6661466458658345,
3323
+ "grad_norm": 2.0521817207336426,
3324
+ "learning_rate": 0.0004765990639625585,
3325
+ "loss": 0.1929,
3326
+ "step": 4700
3327
+ },
3328
+ {
3329
+ "epoch": 3.6739469578783153,
3330
+ "grad_norm": 1.009435772895813,
3331
+ "learning_rate": 0.00047548473367506127,
3332
+ "loss": 0.2248,
3333
+ "step": 4710
3334
+ },
3335
+ {
3336
+ "epoch": 3.6817472698907956,
3337
+ "grad_norm": 1.105904221534729,
3338
+ "learning_rate": 0.0004743704033875641,
3339
+ "loss": 0.1554,
3340
+ "step": 4720
3341
+ },
3342
+ {
3343
+ "epoch": 3.689547581903276,
3344
+ "grad_norm": 1.9131145477294922,
3345
+ "learning_rate": 0.0004732560731000669,
3346
+ "loss": 0.1435,
3347
+ "step": 4730
3348
+ },
3349
+ {
3350
+ "epoch": 3.6973478939157567,
3351
+ "grad_norm": 4.082576751708984,
3352
+ "learning_rate": 0.0004721417428125697,
3353
+ "loss": 0.1539,
3354
+ "step": 4740
3355
+ },
3356
+ {
3357
+ "epoch": 3.705148205928237,
3358
+ "grad_norm": 0.8368641138076782,
3359
+ "learning_rate": 0.0004710274125250724,
3360
+ "loss": 0.1296,
3361
+ "step": 4750
3362
+ },
3363
+ {
3364
+ "epoch": 3.712948517940718,
3365
+ "grad_norm": 2.7137794494628906,
3366
+ "learning_rate": 0.00046991308223757523,
3367
+ "loss": 0.1557,
3368
+ "step": 4760
3369
+ },
3370
+ {
3371
+ "epoch": 3.720748829953198,
3372
+ "grad_norm": 1.2786542177200317,
3373
+ "learning_rate": 0.00046879875195007803,
3374
+ "loss": 0.1529,
3375
+ "step": 4770
3376
+ },
3377
+ {
3378
+ "epoch": 3.7285491419656784,
3379
+ "grad_norm": 2.214386463165283,
3380
+ "learning_rate": 0.0004676844216625808,
3381
+ "loss": 0.143,
3382
+ "step": 4780
3383
+ },
3384
+ {
3385
+ "epoch": 3.736349453978159,
3386
+ "grad_norm": 1.2340818643569946,
3387
+ "learning_rate": 0.0004665700913750836,
3388
+ "loss": 0.1481,
3389
+ "step": 4790
3390
+ },
3391
+ {
3392
+ "epoch": 3.7441497659906395,
3393
+ "grad_norm": 1.804880976676941,
3394
+ "learning_rate": 0.0004654557610875864,
3395
+ "loss": 0.1385,
3396
+ "step": 4800
3397
+ },
3398
+ {
3399
+ "epoch": 3.7519500780031203,
3400
+ "grad_norm": 1.0058701038360596,
3401
+ "learning_rate": 0.0004643414308000892,
3402
+ "loss": 0.2446,
3403
+ "step": 4810
3404
+ },
3405
+ {
3406
+ "epoch": 3.7597503900156006,
3407
+ "grad_norm": 2.6180830001831055,
3408
+ "learning_rate": 0.00046322710051259193,
3409
+ "loss": 0.18,
3410
+ "step": 4820
3411
+ },
3412
+ {
3413
+ "epoch": 3.767550702028081,
3414
+ "grad_norm": 0.8924421072006226,
3415
+ "learning_rate": 0.00046211277022509473,
3416
+ "loss": 0.1533,
3417
+ "step": 4830
3418
+ },
3419
+ {
3420
+ "epoch": 3.7753510140405617,
3421
+ "grad_norm": 1.5280059576034546,
3422
+ "learning_rate": 0.0004609984399375975,
3423
+ "loss": 0.1567,
3424
+ "step": 4840
3425
+ },
3426
+ {
3427
+ "epoch": 3.783151326053042,
3428
+ "grad_norm": 2.1860077381134033,
3429
+ "learning_rate": 0.0004598841096501003,
3430
+ "loss": 0.1502,
3431
+ "step": 4850
3432
+ },
3433
+ {
3434
+ "epoch": 3.790951638065523,
3435
+ "grad_norm": 1.2397303581237793,
3436
+ "learning_rate": 0.00045876977936260314,
3437
+ "loss": 0.163,
3438
+ "step": 4860
3439
+ },
3440
+ {
3441
+ "epoch": 3.798751950078003,
3442
+ "grad_norm": 1.8644335269927979,
3443
+ "learning_rate": 0.0004576554490751059,
3444
+ "loss": 0.1843,
3445
+ "step": 4870
3446
+ },
3447
+ {
3448
+ "epoch": 3.8065522620904835,
3449
+ "grad_norm": 4.985640525817871,
3450
+ "learning_rate": 0.0004565411187876087,
3451
+ "loss": 0.2699,
3452
+ "step": 4880
3453
+ },
3454
+ {
3455
+ "epoch": 3.8143525741029642,
3456
+ "grad_norm": 1.4370672702789307,
3457
+ "learning_rate": 0.00045542678850011144,
3458
+ "loss": 0.1285,
3459
+ "step": 4890
3460
+ },
3461
+ {
3462
+ "epoch": 3.8221528861154446,
3463
+ "grad_norm": 1.725677728652954,
3464
+ "learning_rate": 0.00045431245821261424,
3465
+ "loss": 0.1609,
3466
+ "step": 4900
3467
+ },
3468
+ {
3469
+ "epoch": 3.8299531981279253,
3470
+ "grad_norm": 0.9739437699317932,
3471
+ "learning_rate": 0.000453198127925117,
3472
+ "loss": 0.1614,
3473
+ "step": 4910
3474
+ },
3475
+ {
3476
+ "epoch": 3.8377535101404057,
3477
+ "grad_norm": 3.672434091567993,
3478
+ "learning_rate": 0.0004520837976376198,
3479
+ "loss": 0.1747,
3480
+ "step": 4920
3481
+ },
3482
+ {
3483
+ "epoch": 3.845553822152886,
3484
+ "grad_norm": 1.3917264938354492,
3485
+ "learning_rate": 0.0004509694673501226,
3486
+ "loss": 0.159,
3487
+ "step": 4930
3488
+ },
3489
+ {
3490
+ "epoch": 3.8533541341653668,
3491
+ "grad_norm": 2.578519105911255,
3492
+ "learning_rate": 0.0004498551370626254,
3493
+ "loss": 0.1394,
3494
+ "step": 4940
3495
+ },
3496
+ {
3497
+ "epoch": 3.861154446177847,
3498
+ "grad_norm": 1.3072192668914795,
3499
+ "learning_rate": 0.00044874080677512814,
3500
+ "loss": 0.1167,
3501
+ "step": 4950
3502
+ },
3503
+ {
3504
+ "epoch": 3.868954758190328,
3505
+ "grad_norm": 1.1134214401245117,
3506
+ "learning_rate": 0.00044762647648763094,
3507
+ "loss": 0.1445,
3508
+ "step": 4960
3509
+ },
3510
+ {
3511
+ "epoch": 3.876755070202808,
3512
+ "grad_norm": 2.7288825511932373,
3513
+ "learning_rate": 0.00044651214620013374,
3514
+ "loss": 0.1693,
3515
+ "step": 4970
3516
+ },
3517
+ {
3518
+ "epoch": 3.8845553822152885,
3519
+ "grad_norm": 1.1238129138946533,
3520
+ "learning_rate": 0.0004453978159126365,
3521
+ "loss": 0.1455,
3522
+ "step": 4980
3523
+ },
3524
+ {
3525
+ "epoch": 3.892355694227769,
3526
+ "grad_norm": 1.7059211730957031,
3527
+ "learning_rate": 0.0004442834856251393,
3528
+ "loss": 0.1069,
3529
+ "step": 4990
3530
+ },
3531
+ {
3532
+ "epoch": 3.9001560062402496,
3533
+ "grad_norm": 1.0301696062088013,
3534
+ "learning_rate": 0.0004431691553376421,
3535
+ "loss": 0.3035,
3536
+ "step": 5000
3537
+ },
3538
+ {
3539
+ "epoch": 3.9079563182527304,
3540
+ "grad_norm": 1.744986891746521,
3541
+ "learning_rate": 0.0004420548250501449,
3542
+ "loss": 0.1249,
3543
+ "step": 5010
3544
+ },
3545
+ {
3546
+ "epoch": 3.9157566302652107,
3547
+ "grad_norm": 0.8731406331062317,
3548
+ "learning_rate": 0.00044094049476264764,
3549
+ "loss": 0.1714,
3550
+ "step": 5020
3551
+ },
3552
+ {
3553
+ "epoch": 3.923556942277691,
3554
+ "grad_norm": 1.1749571561813354,
3555
+ "learning_rate": 0.00043982616447515045,
3556
+ "loss": 0.264,
3557
+ "step": 5030
3558
+ },
3559
+ {
3560
+ "epoch": 3.9313572542901714,
3561
+ "grad_norm": 2.552839756011963,
3562
+ "learning_rate": 0.0004387118341876532,
3563
+ "loss": 0.2517,
3564
+ "step": 5040
3565
+ },
3566
+ {
3567
+ "epoch": 3.939157566302652,
3568
+ "grad_norm": 1.9722734689712524,
3569
+ "learning_rate": 0.000437597503900156,
3570
+ "loss": 0.1854,
3571
+ "step": 5050
3572
+ },
3573
+ {
3574
+ "epoch": 3.9469578783151325,
3575
+ "grad_norm": 2.063805341720581,
3576
+ "learning_rate": 0.0004364831736126588,
3577
+ "loss": 0.1574,
3578
+ "step": 5060
3579
+ },
3580
+ {
3581
+ "epoch": 3.954758190327613,
3582
+ "grad_norm": 4.838432312011719,
3583
+ "learning_rate": 0.0004353688433251616,
3584
+ "loss": 0.1939,
3585
+ "step": 5070
3586
+ },
3587
+ {
3588
+ "epoch": 3.9625585023400935,
3589
+ "grad_norm": 1.9519829750061035,
3590
+ "learning_rate": 0.0004342545130376644,
3591
+ "loss": 0.1334,
3592
+ "step": 5080
3593
+ },
3594
+ {
3595
+ "epoch": 3.970358814352574,
3596
+ "grad_norm": 1.3953014612197876,
3597
+ "learning_rate": 0.00043314018275016715,
3598
+ "loss": 0.1504,
3599
+ "step": 5090
3600
+ },
3601
+ {
3602
+ "epoch": 3.9781591263650546,
3603
+ "grad_norm": 1.6272999048233032,
3604
+ "learning_rate": 0.00043202585246266995,
3605
+ "loss": 0.153,
3606
+ "step": 5100
3607
+ },
3608
+ {
3609
+ "epoch": 3.985959438377535,
3610
+ "grad_norm": 1.610538125038147,
3611
+ "learning_rate": 0.0004309115221751727,
3612
+ "loss": 0.1727,
3613
+ "step": 5110
3614
+ },
3615
+ {
3616
+ "epoch": 3.9937597503900157,
3617
+ "grad_norm": 1.6635684967041016,
3618
+ "learning_rate": 0.0004297971918876755,
3619
+ "loss": 0.1316,
3620
+ "step": 5120
3621
+ },
3622
+ {
3623
+ "epoch": 4.0,
3624
+ "eval_loss": 0.31802308559417725,
3625
+ "eval_runtime": 526.9062,
3626
+ "eval_samples_per_second": 1.044,
3627
+ "eval_steps_per_second": 1.044,
3628
+ "eval_wer": 21.84784707472485,
3629
+ "step": 5128
3630
+ }
3631
+ ],
3632
+ "logging_steps": 10,
3633
+ "max_steps": 8974,
3634
+ "num_input_tokens_seen": 0,
3635
+ "num_train_epochs": 7,
3636
+ "save_steps": 500,
3637
+ "stateful_callbacks": {
3638
+ "TrainerControl": {
3639
+ "args": {
3640
+ "should_epoch_stop": false,
3641
+ "should_evaluate": false,
3642
+ "should_log": false,
3643
+ "should_save": true,
3644
+ "should_training_stop": false
3645
+ },
3646
+ "attributes": {}
3647
+ }
3648
+ },
3649
+ "total_flos": 4.51799588339712e+18,
3650
+ "train_batch_size": 3,
3651
+ "trial_name": null,
3652
+ "trial_params": null
3653
+ }
checkpoint-5128/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87bdde76802c6f6975c7a62016872baaa0d2d042f00a6968d4a9fadade014aa7
3
+ size 5432
checkpoint-6410/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openai/whisper-small
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.1
checkpoint-6410/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "WhisperForConditionalGeneration",
5
+ "parent_library": "transformers.models.whisper.modeling_whisper"
6
+ },
7
+ "base_model_name_or_path": "openai/whisper-small",
8
+ "bias": "none",
9
+ "corda_config": null,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 64,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.05,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "r": 32,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "q_proj",
31
+ "v_proj"
32
+ ],
33
+ "task_type": null,
34
+ "trainable_token_indices": null,
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-6410/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7313df1e75f9aca4b1a82d72980785975e3f0e30da87c2b81dff8c577dd213c4
3
+ size 14176064
checkpoint-6410/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ec451ebc511ef43f8ca418f2248bba15cd78b28d86cc01c9fc53638388a1300
3
+ size 28432570
checkpoint-6410/preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
checkpoint-6410/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6edcbf98f5f90a4551193d8d2d60dae946229979862138b4fb7d659856528da1
3
+ size 14244
checkpoint-6410/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46213cf2f5a959fe173ea9d1d524a5882aabaa919b9fbc411eb868fcba63adab
3
+ size 988