visalkao commited on
Commit
1ed7255
·
verified ·
1 Parent(s): b5fac09

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -159
README.md CHANGED
@@ -1,7 +1,10 @@
1
- ---
2
- base_model: openai/whisper-small
3
- library_name: peft
4
- ---
 
 
 
5
 
6
  # Model Card for Model ID
7
 
@@ -17,186 +20,73 @@ library_name: peft
17
 
18
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
  ## Uses
37
 
38
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
 
 
 
 
 
 
 
 
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.15.1
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openai/whisper-small
3
+ library_name: peft
4
+ license: mit
5
+ language:
6
+ - fr
7
+ ---
8
 
9
  # Model Card for Model ID
10
 
 
20
 
21
 
22
 
23
+ - **Developed by:** Visal KAO
24
+ - **Model type:** Speech Recognition
25
+ - **Language(s) (NLP):** French
26
+ - **License:** MIT
27
+ - **Finetuned from model :** Whisper-small
 
 
28
 
29
  ### Model Sources [optional]
30
 
31
  <!-- Provide the basic links for the model. -->
32
 
33
+ - **Repository:** openai/whisper-small
34
+ ## Dataset
35
+ This model is finetuned on 50% of French Single Speaker Speech Dataset on kaggle (Only lesmis).
36
+ - **Link to dataset :** (https://www.kaggle.com/datasets/bryanpark/french-single-speaker-speech-dataset)
37
 
38
  ## Uses
39
 
40
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
+ The goal of this project is to finetune whisper-small model to improve its accuracy for french transcription.
42
 
43
+ The reason why I chose Whisper-small is due to its size and versatility. My primary objective is to build/finetune a small model to get acceptable results.
44
  ### Direct Use
45
 
46
+ **Live Demo :** https://huggingface.co/spaces/visalkao/whisper-small-french-finetuned
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  ## Bias, Risks, and Limitations
49
 
50
+ As this model has less than 250 millions parameters, which is quite small considering its objective is to transcribe speech, it also has its own limitation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
+ The Word Error Rate (WER) of this finetuned model is approximately 0.17 (17%).
53
 
54
+ For reference, the original Whisper-small's WER is around 0.27 (27%) on the same dataset.
55
 
 
56
 
 
57
 
 
58
 
59
+ ## Training Hyperparameters
60
+ This model is trained using LoRa with these hyperparamters:
61
 
62
+ * per_device_train_batch_size=3,
63
+ * gradient_accumulation_steps=1,
64
+ * learning_rate=1e-3,
65
+ * num_train_epochs=7,
66
+ * evaluation_strategy="epoch",
67
+ * fp16=True,
68
+ * per_device_eval_batch_size=1,
69
+ * generation_max_length=225,
70
+ * logging_steps=10,
71
+ * remove_unused_columns=False,
72
+ * label_names=["labels"],
73
+ * predict_with_generate=True,
74
 
 
75
 
76
+ ## Results
77
 
78
+ Before finetuning, The Word Error Rate on this dataset is approximately 0.27.
79
 
80
+ After finetuning, it drops down 0.1 to 0.17 or 17% wer (On testing data).
81
 
82
+ Here is the training log:
 
83
 
84
+ | Epoch | Training Loss | Validation Loss | WER |
85
+ |-------|--------------|----------------|------------|
86
+ | 1 | 0.369600 | 0.404414 | 26.665379 |
87
+ | 2 | 0.273200 | 0.361762 | 22.793976 |
88
+ | 3 | 0.308800 | 0.344289 | 24.454528 |
89
+ | 4 | 0.131600 | 0.318023 | 21.847847 |
90
+ | 5 | 0.117400 | 0.311023 | 19.134968 |
91
+ | 6 | 0.035700 | 0.301410 | 18.922572 |
92
+ | 7 | 0.013900 | 0.315151 | 16.972388 |