|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from PIL import Image |
|
import torch |
|
from io import BytesIO |
|
import base64 |
|
|
|
|
|
model_id = "vikhyatk/moondream2" |
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
def preprocess_image(encoded_image): |
|
"""Decode and preprocess the input image.""" |
|
decoded_image = base64.b64decode(encoded_image) |
|
img = Image.open(BytesIO(decoded_image)).convert("RGB") |
|
return img |
|
|
|
def handler(event, context): |
|
"""Handle the incoming request.""" |
|
try: |
|
|
|
input_image = event['body']['image'] |
|
question = event['body'].get('question', "move to the red ball") |
|
|
|
|
|
img = preprocess_image(input_image) |
|
|
|
|
|
enc_image = model.encode_image(img).to(device) |
|
answer = model.answer_question(enc_image, question, tokenizer) |
|
|
|
|
|
if isinstance(answer, torch.Tensor): |
|
answer = answer.cpu().numpy().tolist() |
|
|
|
|
|
response = { |
|
"statusCode": 200, |
|
"body": { |
|
"answer": answer |
|
} |
|
} |
|
return response |
|
except Exception as e: |
|
|
|
response = { |
|
"statusCode": 500, |
|
"body": { |
|
"error": str(e) |
|
} |
|
} |
|
return response |