|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from PIL import Image |
|
import torch |
|
from io import BytesIO |
|
import base64 |
|
|
|
class EndpointHandler: |
|
def __init__(self, model_dir): |
|
self.model_id = "zesquirrelnator/moondream2-finetuneV2" |
|
self.model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True) |
|
self.tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2", trust_remote_code=True) |
|
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(self.device) |
|
|
|
def preprocess_image(self, encoded_image): |
|
"""Decode and preprocess the input image.""" |
|
decoded_image = base64.b64decode(encoded_image) |
|
img = Image.open(BytesIO(decoded_image)).convert("RGB") |
|
return img |
|
|
|
def __call__(self, data): |
|
"""Handle the incoming request.""" |
|
try: |
|
|
|
inputs = data.pop("inputs", data) |
|
input_image = inputs['image'] |
|
question = inputs.get('question', "move to the red ball") |
|
|
|
|
|
img = self.preprocess_image(input_image) |
|
|
|
|
|
enc_image = self.model.encode_image(img).to(self.device) |
|
answer = self.model.answer_question(enc_image, question, self.tokenizer) |
|
|
|
|
|
if isinstance(answer, torch.Tensor): |
|
answer = answer.cpu().numpy().tolist() |
|
|
|
|
|
response = { |
|
"statusCode": 200, |
|
"body": { |
|
"answer": answer |
|
} |
|
} |
|
return response |
|
except Exception as e: |
|
|
|
response = { |
|
"statusCode": 500, |
|
"body": { |
|
"error": str(e) |
|
} |
|
} |
|
return response |